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1 Terms and Definitions

1.1 Algorithmic Governance

Algorithmic governance is a mode of governance that is machine-like in nature, and
founded on computer-based procedures and rules [11, 18]. While it is a mode of man-
agement by and based on automation, it is not intrinsically linked to any particular
technology. However, the availability of large amount of data and the advances in ma-
chine learning have made algorithmic governance quicker, more efficient, and consequently
more ubiquitous [18]

1.2 Fairness, Bias and Transparency

Bias and discrimination are closely related and are often used interchangeably in the lit-
erature, even though they have slightly separate meanings. Bias is often considered as an
overarching term, defined as a preconceived, internal opinion about individuals or groups,
that can be positive or negative. Discrimination however, is the actual negative treatment
of or actions against groups and individuals based on one or multiple bias(es). In this
regard, discrimination can be the result of intentional as well as unintentional actions, also
in their manifestation through algorithms. The term discrimination often finds use in a
legal context, where multiple regulations are in force to prevent intentional discrimination
and also increasingly unintentional discrimination, or disparate impact [20].
A rare and thorough analysis of what bias means in the context of algorithms and au-
tomated decision making was provided by Friedman and Nissenbaum [22], who consider
algorithms as biased, in that they have the potential to ”systematically and unfairly dis-
criminate against certain individuals or groups of individuals in favor of others”. The
authors furthermore explain what ”unfairly discriminates” means in the context of com-
puter systems and algorithms, namely ”if it denies an opportunity or a good or if it
assigns an undesirable outcome to an individual or group of individuals on grounds that
are unreasonable or inappropriate”.
This definition is insofar useful, as it encompasses both the terms of bias and of discrim-
ination and shows how discrimination should be considered as the biased action, the act
of treating someone unfairly, bridging to the term of fairness. Fairness has also become
a much used notion in the computer sciences, particularly in relation to fair algorithms
and fair AI [67]. The understanding of having fair algorithms, fair automated decision
making, and of fairness in general is that all individuals and groups are treated equally.
Referring again to the earlier definition of Friedmann and Nissenbaum [22], this shows
that fairness stands in direct opposition of discrimination.

1.2.1 3 types of bias

Classifications and categorisations that are made through automated decision making have
particularly been shown to disfavour minorities unfairly, automatically discriminating
them based on biased algorithms [48, 26]. Having seen that an algorithmic system is biased
if it ”unfairly discriminates against certain individuals or groups”, it is worth considering
the origin(s) of the bias. Generally, there are three different types of algorithmic biases
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that can be differentiated: (1) a pre-existing bias; (2) a technical bias; (3) an emergent
bias [22].

A pre-existing bias is a bias that is prevalent within our societies, and is the precon-
ceived, internal opinion about individuals or groups. A pre-existing bias stems from the
social institutions, from our norms and attitudes and generally manifests itself as dis-
criminative through our practices. This also means that the pre-existing bias can reflect
solely the personal opinion and prejudice of one individual - in this case of someone who
is responsible for the design of the algorithmic system. But the bias can also be systemic
within our society and thus way more difficult to address. There are many examples of
pre-existing biases in algorithms, as it are the ones that appear to be the most logical,
mirroring the biases that are existing in our societies. A common example from policing
is the use of predictive policing algorithms. The technology is intended to direct police
forces into areas in which most a criminal activity is most likely to happen. However,
as many studies have shown [44][9][57], the prediction algorithm is very often trained on
biased data, collected through years of police work that predominantly targets minorities
and people of colour. The algorithm is simply repeating a pre-existing bias. However, as
it becomes a defining characteristic of the system, it risks to further reinforce and mate-
rialize this bias, creating a feedback-loop with a severe impact on the targeted groups in
our society.

The second type of algorithmic bias is inherent of the technology itself. Technical
biases usually emerge within the design process of the algorithms and are the results of
limitations of computer tools such as hard- and software. They can be the result of errors
in coding, and in the construction and design of the algorithm [37]. But they also can
emerge when system designers attempt to digitalise human qualities, when they are trying
to make fundamental human aspects machine readable.

The third type of algorithmic biases are emergent biases. These do not exist (per
se) in the technology straight “out of the box.” Instead, they emerge over time as new
knowledge is created that can’t be integrated into the algorithm. Or through the inter-
action between the technology and the users, producing outcomes that were not intended
or considered by the system designers. As automated decision making technologies are
increasingly integrated in everyday societal practices, individuals have to adapt to incor-
porate these technologies into their routines. In most cases, this means that they need to
make themselves ”machine-readable” [40]. If such technologies are applied in areas with a
low technological knowledge, amongst individuals which have difficulties reading, hearing,
seeing, etc., biases quickly emerge.

1.2.2 Different types of discrimination

As with bias, there are also different aspects of discrimination, that need to be considered.
Although the concept of discrimination as an unfair treatment of individuals or groups
remains the same, this treatment can be based on different attributes. Direct discrim-
ination describes the unfair treatment that is based on protected grounds, such as age,
gender, ethnicity, disability, creed, sexual orientation, etc. However, unfair treatment can
also be the outcome of indirect discrimination, through proxies[46]. It is worth noting, for
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instance, that COMPAS allegedly does not explicitly use race as an input. However, the
173-questions long questionnaire includes sections about the neighbourhood and family
history of the defendant.
Besides direct and indirect discrimination, there are also two other forms of discrimination
that need to be mentioned here, as they increasingly emerge through the use of algorithms
and automated decision making. These are intersectional discrimination and emergent
discrimination.
Intersectional discrimination addresses the more complex situations of discrimination that
occur through a combination of discriminating characteristics. The idea behind intersec-
tional discrimination is that, for example, the combined discrimination based on gender
and ethnicity for women of colour is experienced differently than single entities of dis-
crimination based on ethnicity and based on gender [46]. Particularly through algorith-
mic profiling and individualised and personalised decision-making, these intersection of
discriminating identities risk to occur more often, because much more individual charac-
teristics are used as a method to assess individuals. Which also brings us to the aspect of
emergent discrimination. As with emergent bias seen before, also discrimination can occur
over time, without having accounted for the potential of future discrimination situations.
This is even more the case when intersectional discrimination is taken into account, where
discrimination might emerge due to a combination of potentially discriminating charac-
teristics.
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2 Bias Detection and Mitigation

2.1 Competing Definitions of Fairness and Bias

In the broadest of terms, it can be defined as impartial and just treatment without fa-
voritism or discrimination, moving the burden of definition on the terms favoritism and
discrimination. This looseness in definition carries over to the domain of machine learn-
ing, in which fairness can be defined as the absence of algorithmic bias. However, some
definitions have been broadly used in the scientific community.

2.1.1 Disparate treatment and disparate impact

The first distinction that must be made is between disparate treatment and disparate
impact. While the terms come from US law1, they have been used outside this context.
Disparate treatment refers to intentional discrimination or D, while disparate impact oc-
curs when a policy or an outwardly neutral criteria for decision ends up affecting a group
more than the other. Crucially, disparate impact can occur even without an explicit inten-
tion to discriminate. For instance, basing the decision to grant a loan on the ZIP code of
the applicant can lead to disparate impact in heavily segregated areas. Assessing whether
or not an algorithm exhibits either of these practices is problematic when little is known
about the inner workings of the system, or about the predominant factors influencing a
prediction.

2.1.2 Group Fairness and individual fairness

The second distinction is between group fairness and individual fairness [14, 47]. In
individual fairness, the goal is to have similar predictions for similar individuals. Coun-
terfactual fairness is an example of such definition, in which a model is considered fair
if the prediction for an individual is the same as it would be for a counter-individual
whose attributes are identical except for the sensitive attribute. Group fairness, on the
other hand, requires that different groups (with regard to the sensitive attributes) are
treated equally. This can translate into having a measure of performance (precision, re-
call, f1-score, etc.) be equal across groups. In other circumstances, group fairness can be
measured through, for instance, demographic parity.

2.1.3 Metrics

An appropriate choice of a metric can change our vision of the fairness of an algorithm.
As a large number of these metrics rely on confusion matrix, which presents a summary
of the predictions made by a classifier against the actual labels, an example of a confusion
matrix with the associated terms can be seen in Fig. 1:

1EEOC v. Sambo’s of Georgia, Inc., 530 F. Supp. 86, 92 (N.D. Ga. 1981)
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Figure 1: Confusion Matrix and Associated Metrics

Accuracy Parity

The accuracy is equal across groups.

Demographic Parity and Proportional or Statistical Parity

These terms are often used synonymously ([14, 70], in which case they are if the
likelihood of a positive prediction is the same for protected and unprotected groups.
It should be noted, however, that some tools use other definitions. Fairness (R)2, for
instance, considers that demographic parity is achieved when the absolute number of
positive predictions in the subgroups are close to each other.

Predictive Rate Parity

The positive predictive values are equal across groups.

Conditional Demographic Parity

Also called conditional non-discrimination [13]. Controlling for a set of legitimate
factors, the probability of being predicted positive is equal across groups.

Equal opportunity

True Positive Rate is equal across groups.

Equalized Odds

True Positive Rate and False Positive Rate are equal across groups.

Conditional use accuracy

Negative Predictive Value and Positive Predictive Value are equal across groups. When
the result is not a binary classification but a risks-core, this metrics becomes ”calibration”.

2see Section 2.3.3
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Calibration

Given a particular score, the probability of being ground-truth positive (resp. nega-
tive) is equal across groups.

False Positive (resp. Negative) Rate Parity

False positive (resp. negative) rate parity is achieved if the false positive (resp. nega-
tive) rates in the subgroups are equals.

Positive (resp. Negative) Predictive Value Parity

Positive (resp. negative) Predictive Value parity is achieved if the Positive (resp.
negative) Predictive Value in the subgroups are equals.

Specificity Parity

Specificity parity is achieved if the specificity in the subgroups are close to each other.
This function can be considered the ‘inverse’ of the equalized odds.

Figure 2: An example of a ROC curve, made in https://datatab.net

ROC AUC Parity

The ROC (Receiver Operating Characteristic) curve is a plot that illustrates the per-
formance of a binary classification model. It displays the trade-off between the true
positive rate (sensitivity) and the false positive rate (specificity). An example of a ROC
curve can be seen in Fig. 2. The AUC (Area Under the Curve) varies between 0 and
1. An AUC of 0.0 signifies a model with predictions that are entirely incorrect, while
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an AUC of 1.0 indicates a model with predictions that are entirely accurate. ROC AUC
parity is achieved if the ROC AUC is equal for all subgroups.

Generalized Entropy Index

The Generalized Entropy Index [62] is a statistical measure used to assess the level of
inequality or diversity within predictions. It considers differences in an individual’s pre-
diction (bi) to the average prediction accuracy (µ), where n is the number of predictions,

bi = ŷi − yi + 1 and µ =
∑

i bi
n

GEI = 1
nα(1−α)

∑n
i=1

(
( bi
µ
)α − 1

)
Counterfactual Fairness

It aims to ensure that decisions made by a model would remain the same even if
sensitive attributes of an individual were different. The formal definition given in [41] is
that a predictor Ŷ is counterfactually fair if under any context X = x and A = a

P (ŷA←a(U) = y|X = x,A = a) = P (ŷA←a′(U) = y|X = x,A = a)

where A, X and Y represent the protected attributes, remaining attributes, and output
of interest respectively.

As we can see, fairness metrics are numerous and do not have universal definitions.
Moreover, some of them are mathematically incompatible: equalized odds and conditional
use accuracy can only be achieved at the same time if the prevalence is equal across group,
or in the case of a perfect classifier [7], which means that practionners must choose which
metrics they want to prioritize in their system. Aequitas3 proposes a ”Fairness Tree” (see
Figure 3) to help make this choice.

2.2 Bias Mitigation Techniques

Selecting the appropriate definitions of fairness is only the first step; subsequently, practi-
tioners must determine how to achieve it. Both [14] and [47] categorize these approaches
into pre-processing, in-processing, and post-processing. As [47] highlights, the choice of
approach depends on the type of bias being addressed and the resources available to the
practitioner. For example, if the goal is to enhance fairness in an already trained system
without access to training data or the algorithm, neither pre-processing nor in-processing
would be feasible. [14] mentions that bias mitigation methods like adversarial learning and
constraint optimization can fall into multiple categories. We do not give an exhaustive
list of all bias mitigation techniques, but a curated selection of relevant approaches.

3http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/, last accessed
27/02/2024
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Figure 3: Fairness Tree, from http://www.datasciencepublicpolicy.org/our-work/

tools-guides/aequitas/

2.2.1 Pre-processing

Pre-processing methods focus on altering the training data.

Optimized Pre-processing

Optimized pre-processing [12] learns a probabilistic transformation that edits the fea-
tures and labels in the data with group fairness, individual distortion, and data fidelity
constraints and objectives. This technique is not applied during the training of the sys-
tem whose bias we want to mitigate, but to the potentially biased dataset on which this
system will be used.
The optimization problem is to minimize the utility loss, which means that the distribu-
tion of transformed labels and features must be statistically close to the distribution of
original labels and features.The first additional constraint is to limit the dependence of
the transformed outcome on the protected features, meaning that in the transformed dis-
tribution, the conditional distribution of the outcome on the sensitive features is “close”
to a target distribution, with the authors of [12] remarking that the meaning of “close”
and the target distribution should be informed by societal aspects. The second additional
constraint is distortion control, which means that the transformation should avoid very
large changes when mapping the original labels to transformed labels, in order to preserve
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the predictive power of the algorithm trained on this data.

Disparate Impact Remover

As the title indicate, Disparate Impact Removal[21] seeks to remove disparate im-
pact. This method, using the US Equal Employment Opportunity Commission (EEOC)
guidelines (sometimes known as the ”80% rule”) defines disparate impact as a positive
likelihood ratio (see Figure 1) over 1.25.
In order to remove this disparate impact, [21] proposes an algorithm to ”repair” the
dataset(i.e. remove disparate impact) by only changing the non-sensitive attributes. In
order to preserve the predictive power of the system that will be trained on that data,
they add a constraint that the transformation must preserve the rank of the non-sensitive
attribute.

Reweighing

In reweighing, instead of changing the labels, the labels and features in the training
dataset are assigned weights. By carefully choosing the weights, the training dataset can
be made discrimination-free with regards to the sensitive attributes without having to
change any of the labels.
Reweighing presents an approach that spans both pre-processing and in-processing method-
ologies. For instance, in [36], the aim is to assign weights considering the probability of an
instance with a particular class and sensitive attribute combination, representing a pre-
processing technique. Conversely, [38] initially constructs an unweighted classifier, then
proceeds to learn sample weights, and finally retrains the classifier using these weights,
illustrating an in-processing strategy. Similarly, [33] identifies sensitive training instances
as a pre-processing step, but subsequently learns weights for these instances during the
optimization process for the chosen fairness metric, representing an in-processing tech-
nique.

2.2.2 In-processing

In-processing methods intervene during training.

Learning Fair Representations

In [72], the authors aim to transform each individual, depicted as a data point within a
given input space, into a probability distribution within a novel representation space. The
goal of this transformation is to eliminate any discernible information regarding whether
the individual belongs to a protected subgroup, while preserving as much other pertinent
information as feasible. This novel representation is expressed as a probabilistic mapping
to a collection of prototypes, although it’s important to note that this is just one potential
form of intermediate representation among many. Furthermore, these representations
are optimized to ensure that any classification tasks utilizing them achieve maximum
accuracy.
This method can be understood as both an in-processing approach, and be compared, as
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the authors do, to other machine learning models, or as a pre-processing method which
modify the data to transform it into representation on which different models can be
trained. This method also do not require the practioner to chose beforehand which fairness
criteria they want to optimize: [72] uses both group fairness (in the form of statistical
parity) and individual fairness (by comparing a model’s classification prediction of a given
point to its nearest neighbor)

Adversarial Debiasing

Adversarial Debiasing is a technique that uses adversarial training to mitigate bias. It
involves simultaneous training of a predictor and a discriminator. In [73], fairness mea-
sures are explored within the framework of adversarial debiasing, focusing on supervised
deep learning tasks where the objective is to predict an output variable Y based on an
input variable X, while ensuring impartiality regarding a variable Z, referred to as the
protected variable. In these learning systems, the predictor Ŷ = f(X) is trained using a
dataset comprising tuples of input, output, and protected variables (X, Y, Z). The predic-
tor f typically has access to the protected variable Z, although it’s not strictly necessary.
This setup enables the selection of which biases are deemed undesirable for a specific
application by specifying the protected variable.
The predictor is trained to predict Y given X.It is assumed in [73]that the model is
trained by adjusting weights W to minimize a loss function LP (ŷ, y) using a gradient-
based method like stochastic gradient descent. Subsequently, the output layer of the
predictor feeds into another network termed the adversary, which aims to predict Z. This
component of the network corresponds to the discriminator in a typical GAN. The ad-
versary incorporates a loss term LA(ẑ, z) and weights U , with potential additional inputs
depending on the fairness definition being targeted. For Demographic Parity, the adver-
sary receives the predicted label Ŷ , enabling it to predict the protected variable using
solely the predicted label, against which the predictor seeks to defend. For Equality of
Odds, the adversary receives both Ŷ and the true label Y . For Equality of Opportunity
on a specific class y, the training set of the adversary can be restricted to instances where
Y = y.

2.2.3 Post-processing

Post-processing occurs after modeling.

Equalized Odds Postprocessing

After a model has made predictions, Equalized Odds Post-processing adjusts these
predictions to satisfy the equalized odds criterion. Unlike previously discussed bias miti-
gation technique, this (and other post-processing techniques) do not require to be able to
modify the training data or the training procedure. [29] presents the process of construct-
ing an equalized odds or equal opportunity predictor (Ỹ ) from a potentially discriminatory
binary predictor (Ŷ ) or score (R). The approach involves creating Ỹ based solely on the
random variables (R,A), where A represents a protected attribute such as race or gender.
This derived predictor Ỹ should be independent of the features (X) conditional on (R,A).
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While constructing Ỹ relies on information about the joint distribution of (R,A, Y ), pre-
diction only requires knowledge of (R,A). The training process remains unchanged, with
the focus on a post-learning step. However, it’s essential to minimize loss by designing
derived predictors (Ỹ ) that minimize the expected loss while satisfying equalized odds.
The authors present an optimization problem to derive the optimal equalized odds predic-
tor from Ŷ and A, describing it as a linear program whose solution provides the optimal
predictor.

Counterfactual Correction

Path-Specific Counterfactual Fairness (PSCF), introduced in [17], examines fairness in
various decision-making paths that individuals may follow based on their characteristics.
It transform the output of a classifier in accordance to the identification of unfair causal
pathways through counterfactual correction. This method assumes a graphical causal
model (GCM) between the variables. The latent inference-projection technique ensures
fairness specific to different decision pathways by adjusting variables descended from the
sensitive attribute during testing, while maintaining the original data-generation process
intact during training.

2.3 Tools for Bias Detection

This summary is based on [14], which provides an entry-level overview of the state of
the art and a list of current platforms. Here, we examine each platform is examined
with regard to functionality, useability (e.g., license, maintenance, installation, source),
and its place in the ML pipeline. As the tools vary considerably there is no uniform
test scenario. Therefore, the investigations are centered around examples provided by the
authors and in some cases additional tests. Nevertheless, the majority of the frameworks
for measuring bias in binary classification or regression tasks use either the COMPAS4

or German credit5 dataset in their tutorials. For a quick overview, Table 1 lists all the
tools and contains information about the license, source code availability, installation,
maintenance, the year the project started, and the organization.

2.3.1 Tools for Assessing Fairness and Bias

The majority of tools fall into the category for assessing fairness and bias and predom-
inantly consider binary classification or regression tasks. The exceptions are: Revise,
which is the only platform focused on detecting bias in visual datasets, and Responsibly,
which provides metrics for bias in word embeddings. Except for the Fairness R pack-
age, all the tools are implemented in Python. Fairlearn, Aequitas, and AI Fairness 360
additionally offer GUIs to guide users through the assessment process.

1. Fairlearn: Grouped and un-grouped metrics for binary classification and regres-
sion tasks. Provides additional functionality to perform aggregations over multiple

4https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing,(last
accessed on 27/02/2024 )

5https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data, last accessed on
27/02/2024
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Table 1: Overview of the tools.

Tool License Source Install Maintained Year Organisation

Fairlearn MIT D D 2020 Microsoft

Fairness (R) MIT D D D 2020 independent

TFCO Apache 2.0 D D 2018 Google

Audit-AI MIT D D 2018 pymetrics

Fairness-Measures GNU v3.0 D D 2018 independent

ML-Fairness-Gym Apache 2.0 D D 2020 Google

AIF360 Apache 2.0 D D D 2018 IBM

Aequitas MIT D D D 2018 University of
Chicago

Fairness-Measures GNU v3.0 D D 2018 independent

Responsibly D D 2018 independent

FairTest Apache 2.0 D D D 2015 Columbia Uni-
versity

Revise MIT D D D 2020 Princeton Visual
AI Lab

measurements to obtain scalar results, which can be used, for example, for hyper-
parametertuning.

2. Audit-AI: Bias testing tool for demographic differences, especially in employee
selection procedures.

3. Fairness: R package containing metrics for binary classification problems.

4. Revise: A Tool for measuring bias in visual datasets. Currently focuses on object-,
gender-, and geography-based discrimination.

5. Fairness Measures: Python implementation for the metrics discussed in [76] in-
cluding absolute measures and statistical tests. Compared to the other frameworks
its functionality is rather limited and it uses a peculiar workflow.

6. Aequitas: Offers a set of measurements for binary classification and regression
tasks. Additionally, it provides a web application to interactively audit datasets.

7. Responsibly: Responsibly is the only tool, which includes methods for NLP and
especially word embeddings.

8. AI Fairness 360: Offers an extensive list of over 70 metrics.

9. Fair Test: Testing for unwarranted associations between the output and subgroups
defined by protected variables.
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2.3.2 Tools for Mitigating Bias

The tools for mitigating bias can further be subdivided concerning their position in the
ML pipeline, namely pre-processing, in-processing, and post-processing.

Pre-Processing

1. Revise: A tool for revealing biases in visual datasets but additionally, it provides
example actions (e.g., ”Query images of baseball glove in different scenes like a
sidewalk”) to decrease said biases. In other words, the tool acts as a guide for
pre-processing, which then still has to be done manually.

2. AI Fairness 360: Contains a reweighing approach that modifies the weight of
different training examples described in [36], and a data transformation algorithm
(optimized preprocessing) from [12].

3. Fairlearn: Provides a linear transformation to remove the correlation of the non-
sensitive features and the sensitive features, while retaining as much information as
possible.

4. Responsibly: Debiasing for word-embeddings as proposed by [8, 27, 29].

In-Processing

1. Fairlearn:Failearn’s in-processing approach is based on constraint optimization us-
ing Lagrange multipliers and works for binary classification and regression. It can
wrap any base learning algorithm with a fit and predict method.

2. TFCO::TensorFlow Constraint Optimization is a similar approach Fairlearns con-
straint optimization but with an additional ”shrinking” process to further enhance
the performance. As opposed to Fairlearn, TFCO only works with TensorFlow.

3. AI Fairness 360: Contains multiple mitigation techniques listed in Section 2.2

Post-Processing

1. Fairlearn: Fairlearn contains a Threshold Optimizer that takes a classifier and
transforms its output to enforce certain parity constraints. It is based on [21].

2. AI Fairness 360: Contains multiple mitigation techniques listed in Section 2.2

3. Responsibly: Multiple threshold definitions for binary classification tasks..

2.3.3 Platforms

Fairlearn

Fairlearn is an open-source, and community-driven python package containing met-
rics to assess the fairness of a given system and algorithms to mitigate observed fairness
issues. It is currently actively developed and licensed under the MIT License. Fairlearn
has grown from a project at Microsoft Research in New York City6 .

6https://fairlearn.org/(last accessed on 27/02/2024

15

https://fairlearn.org/


Report on paradigms, policies and metrics for algorithmic fairness

Assessment The metrics for fairness assessment include grouped and ungrouped
metrics for binary classification and regression tasks. The tool provides additional func-
tionality to perform aggregations over multiple measurements to obtain scalar results,
which can be used for e.g., hyperparametert uning. The metrics module is accompanied
by a Jupyter notebook widget provided by Microsoft included in responsible-ai-widgets7,
which offers an interactive experience to assess a model’s fairness and performance.

Mitigation The methods for bias mitigation cover pre-, in-, and post-processing
methods. The algorithms are not tied to a specific ML framework and are implemented
as a ”wrapper” for any model with a fit and predict method. The pre-processing revolves
around a linear transformation to remove the correlation of the non-sensitive features and
the sensitive features while retaining as much information as possible. The in-processing
approach builds on the idea of constraint optimization using Lagrange multipliers as
described in [23, 24]. For post-processing, Fairlearn contains a Threshold Optimizer that
takes a classifier and transforms its output to enforce certain parity constraints. It is
based on [21].

Fairness (R)

Fairness is an R package providing fairness metrics for binary classification problems
and tools to visualize and compare the results. It is actively developed and maintained
by Nikita Kozodoi and Tibor V. Varga, licensed under the MIT License, and available as
a CRAN package. The following lists the metrics provided in the latest version (1.2.2)
including a short description taken from the tutorial8 .

1. Predictive rate parity: Predictive rate parity is achieved if the precisions (or
positive predictive values) in the subgroups are close to each other. The precision
stands for the number of the true positives divided by the total number of examples
predicted positive within a group.

2. Demographic parity: Demographic parity is achieved if the absolute number of
positive predictions in the subgroups are close to each other. This measure does not
take true class into consideration and only depends on the model predictions.

TensorFlow Constrained Optimization

TensorFlow Constrained Optimization (TFCO) is a library for optimizing inequality-
constrained problems in TensorFlow8. It is developed by Google-Research, is licensed
under Apache 2.0, and classifies as an in-processing approach for mitigating bias. While
the library can handle arbitrary objective functions and constraints it proofs to be most
useful when used with the built-in helper functions. They allow defining constraints

7https://github.com/microsoft/responsible-ai-widgets, (last accessed on 27/02/2024 )
8https://kozodoi.me/blog/20200501/fairness-tutorial#6.-Computing-fairness-metrics,

last accessed on 27/02/2024
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with rates (e.g. the error rate, true positive rate, recall, etc). Because rates are non-
differentiable they are approximated with so-called proxy constraints so they can be used
with gradient-based algorithms.
Constrained problems can lead to oscillation instead of convergence and for that case, the
library offers a procedure called shrinking: Multiple snapshots of the model are collected
during training time and then post-processed to a stochastic model. The idea is that even
if none of the models performs particularly well, multiple models combined usually yield
better results. For more details, and theoretical results refer to [25, 26].

Audit-AI

Audit-AI is an open-source Python package developed by pymetrics for bias testing
in classification and regression tasks. The latest version (0.1.1) was released on 29th July
2020 under the MIT License. It is built on top of pandas and sklearn and with a focus
on employee selection procedures.

Fairness-Measures

Fairness Measures9 is a code repository containing implementations from [76] for quan-
tifying discrimination. The code is written in Python and released under the GPL-3.0
License. The program expects the input to be a dataset where each row represents a
person. One of the attributes has to be the target (predicted by a model) and can be
either binary or numeric. Furthermore, protected attributes can be declared with the
prefix protected.

ML-Fairness-Gym

ML-Fairness-Gym is a tool for simulating the impacts of deploying ML-based decision
systems in social environments. It is developed by Google and built upon OpenAI’s
Gym API. The current environments can replicate the dynamic studies proposed in [27]
(lending), [28, 29] (attention allocation), as well as [30, 31] (strategic manipulation).

REVISE

REVISE (REvealing VIsual biaSEs) is a tool for measuring and mitigating bias in
visual datasets developed at Princeton University. It aims to address biases early in the
ML pipeline and currently offers metrics in three categories:

1. Object-based: The object-based analysis considers statistics about object fre-
quency, scale, context, or diversity of representation. It is based on instance labels
and utilizes bounding boxes and object category if available. Additional semantic
labels are inferred by automated computer vision techniques.

9https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisherexact.html,
last accessed on 27/02/2024
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2. Gender-based: The gender-based analysis gives insight into contextual representa-
tion, interactions, appearance differences, gender label inference. It requires gender
labels and is limited to a binarized socially-perceived gender expression.

3. Geography-based:The geography-based analysis relies on country- or subregion-
label annotations, ideally accompanied by information about who took the picture,
and additional tags. The metrics are country distribution, local language analysis,
tag counts, and appearances.

For each of the three categories, the tool provides actionable insights based on the metrics
described above. The actions vary from concrete instructions (e.g. collect more images of
airplanes) to more nuanced observations.

AI Fairness 360

AI Fairness 360 is an open-source Python and R toolkit developed by IBM Research.
It offers metrics to measure individual and group fairness and an extensive collection of
algorithms for mitigating bias. The library is designed to be extendable and released
under the Apache-2.0 License.

Aequitas

Aequitas [43] is an open-source toolkit to audit ML models for bias and discrimination
developed at Carnegie Mellon University. The python library is actively maintained and
is released under the MIT License. The tools are also available as a web application10.

Responsibility

Responsibly11 is an open-source toolkit containing metrics and algorithmic interven-
tions for binary classification tasks as well as metrics and debiasing methods for word
embeddings. The python package is released under the MIT license.

Fair Test

Fair Test is a tool for discovering and testing for unwarranted associations between
an algorithm’s outputs and certain user subpopulations identified by protected features.
The tool has been developed in 2015 at the Columbia University and is written in Python
2.7. The metrics cover binary classification and regression tasks and can be extended with
custom ones.

10http://aequitas.dssg.io/upload.html, last accessed on 27/02/2024
11http://docs.responsibly.ai/, last accessed on 27/02/2024
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3 Datasets

Data availability, collection, cleaning and management is the number one challenge faced
by Machine Learning (ML) practitioners [3]. As illustrated by the saying “Garbage in,
garbage out”, the quality of a machine learning model is directly linked to the quality
of the data that it is trained on [68]. The training data is the input that the model
will learn from. It can take multiple forms: images, text, tabular data (like an excel
sheet), sound, etc. It can also contain additional information, such as bounding boxes or
annotations. In supervised learning, the training data will be augmented with labels, i.e
with the information that your model is trying to predict.

3.1 Data Acquisition

Data acquisition can be separated in data discovery, data augmentation and data gener-
ation [58].

3.1.1 Data Discovery

Data discovery consists of using existing datasets. These datasets can be found on web-
sites such as Kaggle12, DataHub13 or Google Dataset Search14. Companies can also use
collections of internal datasets referred to as ”data lakes”. The term was coined by James
Dixon in 201115 to to describe a repository of raw data in which one needs to ”fish” for
useful datasets [54].

3.1.2 Data Augmentation

Data augmentation can be used to fill out missing information or to extend existing
datasets [58]. This is the approach chosen to create the datasets used to train the pre-
trained models available in the dlib library16, for which the VGGFace dataset 17 and the
face scrub dataset 18 were supplemented with images scraped from the internet. Datasets
of images can also be augmented by modified images from the dataset, using geometric
transformations (rotation, flips, cropping), colorspace transformations [61] or noise injec-
tion [59].

12https://www.kaggle.com/, last accessed on 27/02/2024
13https://datahub.io/, last accessed on 27/02/2024
14https://datasetsearch.research.google.com/, last accessed on 27/02/2024
15https://www.forbes.com/sites/ciocentral/2011/07/21/big-data-requires-a-big-new-architecture/,

last accessed on 27/02/2024
16https://github.com/davisking/dlib-models, last accessed on 27/02/2024
17http://www.robots.ox.ac.uk/~vgg/data/vgg_face/, last accessed on 27/02/2024
18http://vintage.winklerbros.net/facescrub.html, last accessed on 27/02/2024
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3.1.3 Data Generation

If there is no existing data, datasets can be generated manually or automatically. Crowd-
sourcing is an approach to data collection in which web users contribute, gather or pre-
process data [4, 24]. It is done through platforms such as like Amazon Mechanical Turk
(AMT), in which human workers complete tasks. Typical tasks include natural language
description of images [69] and generate questions for question answering datasets [64].
Synthetic data generation is used in cases where restricted access to data, as well as
privacy concerns, limit the possibility of outside help [49]. It can be generated through
deep learning techniques such as Generative Adversarial Networks (GANs) or Variational
AutoEncoders (VAEs), or using software such as Blender or Cloud compare to create
synthetic visual or 3D data [28].

3.2 Data Quality

There are several frameworks [6, 53, 35, 39, 51] to evaluate data quality, without any clear
consensus on which is the best. However, there are recurring criteria:

• Accuracy [6, 53, 35]: The labels used in the training data must correspond to the
reality or the model runs the risk of ‘learning’ incorrect information. This can also
be referred to label errors or label noise.

• Uniformity/Consistencyy [6, 53]: In order to be usable, each data point must have
the same structure. For instance, if the dataset is an image dataset, all data points
have to be images. If the dataset consists of sensor reading at certain times, the
readings must be represented the same way and the time stamp must follow the
same format. When this is not the case, a preprocessing phase can be applied to
the data prior to the machine learning.

• Usability [6]: In addition to being uniform, the data needs to be in a form that is
readable by the program. For instance, a black and white image might be repre-
sented by a two-dimension array, each cells corresponding to a pixel.

• Representativeness [53]: Representativeness is a measure of the similarity between
the data and the reality . It evaluates the ability of the sampled information to
replicate the larger population it was sampled from.

• Currentness [6, 53, 35]: Data need to be as up-to-date as possible. Data will neces-
sarily be from the past, but efforts must be made to not have too avoid data-drift.

• Balance [39]: In classification problems, the distribution of the samples between
classes might not be equal. While it can be representative of the reality, using a
severely imbalanced dataset can lead to poor performances, especially for the mi-
nority class. Class imbalance can be intrinsic to the problem (for instance, fraud
detection or rare event prediction) or be the result of biased sampling or measure-
ment errors.

• Fairness [35, 51]: The data must be as free of bias as possible. This criteria can be
hard to define and to achieve. It can relate to balance (for instance, face datasets
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tend to be heavily skewed toward Caucasian faces, leading to face analysis and
recognition algorithms performing worse on other groups [42]). It can also come into
conflict with other criteria: if a group is a minority in the general population does not
mean it should be a minority in the dataset, even if that would be ‘representative’.
Historical bias must also be taken into account: records of arrest, for instance, might
be a poor substitute for actual criminality considering racial bias in policing [1].

• Quantity [6, 35]: The amount of data must be appropriate to complete the task.
However, there is no hard consensus on how much data you need.

3.3 Data quantity

Depending on the source, the recommendation for adequate dataset size can be:

• 100 to 500 examples per label

• At least 1000 for each plausible case 19

• Ten times more data than degrees of freedom. To put it differently, 10 times more
examples than features 20

• For image classification, 1000 images per class21

• Etc.

In the academic literature, there are conflicting answers to what the optimal amount
of data is. In tweet sentiment classification, the authors of [52] study the influence of
dataset size for tweet sentiment classification. All models tested improve with the dataset
size, but the effect becomes less noticeable as the dataset grows: tripling the dataset size
from 1000 to 3000 improves the Area Under the Curve (AUC) up to 5%, but tripling it
from 81000 to 243000 only improves the AUC by 1%. For 2 labels (positive or negative)
and 1000 features, the optimal dataset size for this task is 81000.
In the medical domain, the performances stop improving over 490 datapoints for skin
segmentation (2 labels, 4 features) and for hospital readmission prediction (3 labels, 55
features) [2].
According to [34] the representativeness of the dataset and the complexity of the model
used have more influence than the size of the dataset.

3.4 Guidelines

In high-stakes Artificial Intelligence (AI), such as health, finance or public safety, special-
ized datasets are required, leading to AI practitioners undertaking data collection from
scratch [59]. Unfortunately, the industry lacks standards for data collection and docu-
mentation [31, 59, 25]. Practitioners have reported not being able to discard poor quality

19https://www.v7labs.com/blog/quality-training-data-for-machine-learning-guide, last
accessed on 27/02/2024

20https://towardsdatascience.com/machine-learning-rules-of-thumb-b50232b4b2f8, last ac-
cessed on 27/02/2024

21https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/,
last accessed on 27/02/2024
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datapoints because of the limited amount of data [59], with software engineers describing
data collection as ”almost like the Wild West” [31]. The lack of transparency with regards
to the collection and annotation process have caused reproducibility issues [50] in datasets
as widely used as Imagenet and CIFAR [55].
In order to combat these issues, guidelines for dataset documentation have been put
forward.

3.4.1 Datasheets

Datasheets for datasets [25] makes an analogy with the electronics industry, in which
every component is accompanied by a datasheet. It proposes a document that records
the motivation, composition, collection process, pre-processing, cleaning, labeling, uses,
and maintenance. By answering the questions laid down in each section, data scientists
are encouraged to reflect on their practices and to emphasize transparency. Although this
documentation process needs not be done at the collection phase (the creators of these
datasheets provide an example for a dataset they did not create), it is most effective when
dataset creators consider the questions before collection.

3.4.2 Framework for dataset development transparency

[32] emphasizes the critical role that datasets play in machine learning and proposes a
framework for dataset development transparency that describes critical documents that
should be produced during the dataset lifecycle.These include Requirements Specification
(in order to make explicit why the data is being collected and to what use it will be put),
Design Document ( which lays down how the requirements are to be met and justify design
decision), and Testing Report ( in order to trace what requirement have been tested and
what flaws have been discovered).

3.4.3 Dataset Nutrition Label

The Dataset Nutrition Label [30] is a tool to enhance the context, content and legibility
of datasets. It takes a form similar to nutrition labels on food with labels, use cases and
alerts, as well as information on the composition, provenance, collection and management
of the dataset. However, this label is only intended for tabular data and is therefore
focused on technical information.While it is designed to be modular, as to accommodate
the needs of different types of datasets, the list of modules provided by the authors
only contains two modules that improve the transparency of the collection process: the
Metadata module ( which contains keywords related to the dataset as well as a description)
and the Provenance module (which contains information about the authors of the dataset).
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4 Model Interpretation

The opacity of algorithmic systems might come from intentional trade or state secrecy,
technical illiteracy or the inherent black-box nature of some algorithms [10]. Regardless
of the cause, it complicates the task of assessing the fairness of the system, leading to
the need for explainability techniques to explain either a single output (local explanation)
or the overall model (global explanation). Explainability seeks to provide rationales for
the decision made by a black-box model, either through global or local explanation. By
contrast, a model is considered interpretable if it intrinsically can be understood by a
human. Such models (Linear Regression, Logistic regression, Decision Tree, Rule-Based,
Generalized Additive Models...) can be paired with natural language explanations and
visualizations to improve clarity, but they are generally outperformed by deep-learning
techniques..

Figure 4: Taxonomy mind-map of Machine Learning Interpretability Techniques, from
[43]

4.1 Explanation of black-box models

This section explores explainability techniques that are model-agnostic can be used with-
out assumptions about the architecture of the model.

4.1.1 Local Interpretable Model-agnostic Explanations (LIME)

LIME [56] creates a local explanation for an output, i.e. it only explains one prediction.
The term ‘Model Agnostic’ refers to the fact that it can be used without assumptions
about the model which made the prediction.First, new data points are generated in the
neighborhood of the input we wish to explain: These new samples are then weighted to
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give more importance to the closer datapoints. Then, a new interpretable model (such as
linear regression) is trained on the new dataset.

4.1.2 Shapley values

Shapley values [45] explain a single prediction by measuring the feature importance among
participating features. The concept of Shapley value is based on game theory, in which
it is used to calculate the contribution of a player in a payoff. In our case, the “player”
is a feature of interest. For one prediction and for one feature of interest, the value is
computed by making a prediction with every combination of feature, with and without
the feature of interest, and taking the average of difference from all combinations. The
importance of individual features can also be averaged over several predictions to create
a global explanation of the model [23, 5]

4.1.3 Counterfactual explanations

Counterfactual explanations(CFEs) are an emerging technique within the field of inter-
pretable machine learning (ML) models. They provide ”what-if” feedback in the form
of ”if an input data point were x’ instead of x, then an ML model’s output would be y’
instead of y.” Counterfactual explainability for ML models has not yet seen widespread
adoption in the industry [65, 66]. In the context of interpretable machine learning, coun-
terfactual explanations can be employed to elucidate predictions for individual instances.
The ”event” refers to the predicted outcome of an instance, while the ”causes” are the
specific feature values of that instance that were input into the model, thereby ”causing”
a certain prediction. When represented as a graph, the relationship between the inputs
and the prediction is straightforward: The feature values cause the prediction

4.1.4 Explainability for CNN

As deep learning has led to both better performances in machine learning and a drop in
the inherent interpretability of the models, a significant part of explainability has been
dedicated to it. Class Activation Maps (CAM) [74] and theirsubsequent improvements
[60, 15] highlight which part of the input was most relevant in the final classification in a
Convolutional Neural Network (CNN). Deconvolution [71] and guided back-propagation
[63] are techniques for visualizing the features learned by a CNN. ProtoPNet [16] uses
a neural network architecture to learn features and prototypes which are then used to
explain classification by comparing them to images in the training set.

4.2 Evaluation of explanations

As deep learning has led to both better performances in machine learning and a drop in
the inherent interpretability of the models, a significant part of explainability has been
dedicated to it. Class Activation Maps (CAM) [74] and theirsubsequent improvements
[60, 15] highlight which part of the input was most relevant in the final classification in a
Convolutional Neural Network (CNN). Deconvolution [71] and guided back-propagation
[63] are techniques for visualizing the features learned by a CNN. ProtoPNet [16] uses
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a neural network architecture to learn features and prototypes which are then used to
explain classification by comparing them to images in the training set. .3.2. Evaluation
of explanations There is no widespread consensus on what makes a good explanation [75],
but the following goals must be achieved: the explanation must be accurate (it must
faithfully represent the actual working of the system), understandable (the person to
which the explanation is presented can comprehend the information) and efficient (the
explanation is quickly understandable) [13]. In order to measure these properties, [19]
proposes three types of evaluations: application-grounded evaluations, human-grounded
evaluations, and functionally-grounded evaluations. Application-grounded evaluations
measure the quality of an explanation when it is presented to a domain-expert performing
a real task, which means that they require experiments in the real world with the end-
user. Human-grounded evaluations relax these constraints by having a layperson perform
simplified tasks. Lastly, functionally-grounded evaluations require no human experiments
and use a mathematical definition of interpretability as a proxy.
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5 Policies

Figure 5: Data Visualization of AI Initiatives, from https://www.coe.int/en/web/

artificial-intelligence/national-initiatives

As illustrated in Figure 5, the European Union (EU) has witnessed a surge in AI ini-
tiatives aimed at regulation to ensure the responsible and ethical development and deploy-
ment of artificial intelligence technologies. From the release of the European Commission’s
AI White Paper in 2020 to the proposed AI Act in April 2021, the EU has been actively
shaping its regulatory landscape to address the challenges posed by AI while maximizing
its potential benefits. In addition to EU-level initiatives, various national governments
within the European Union have also launched their own AI regulatory efforts. Countries
such as France, Germany, and the UK have introduced national AI strategies outlining
priorities for AI development and governance. These strategies often include measures to
promote innovation, address ethical concerns, and ensure the responsible use of AI tech-
nologies. Furthermore, non-binding instruments such as guidelines, codes of conduct, and
best practices have been developed by both governmental and non-governmental entities

5.1 EU Regulations

5.1.1 GDPR

The General Data Protection Regulation (GDPR) addresses the issue of algorithmic fair-
ness indirectly by providing a framework for the protection of individuals’ personal data
and establishing principles for responsible data processing. While the GDPR primarily
focuses on data protection and privacy, its provisions can indirectly contribute to ensuring
fairness in algorithmic decision-making processes.
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Lawfulness, fairness, and transparency

One of the fundamental principles of the GDPR is that personal data must be pro-
cessed lawfully, fairly, and transparently. This principle implies that algorithms and
decision-making processes must not result in unfair discrimination against individuals
based on protected characteristics such as race, gender, or religion.

Purpose limitation and data minimization

The GDPR requires that personal data be collected for specified, explicit, and legit-
imate purposes and not further processed in a manner that is incompatible with those
purposes. By limiting the purposes for which data can be used, the GDPR helps prevent
algorithms from being applied in ways that might result in unfair outcomes.

Data accuracy and accountability

The GDPR mandates that organizations processing personal data must take reason-
able steps to ensure that the data is accurate and up-to-date. Additionally, organizations
are required to implement appropriate technical and organizational measures to ensure ac-
countability and demonstrate compliance with GDPR principles. This includes ensuring
that algorithms used in decision-making processes are regularly audited and monitored
for fairness and accuracy.

Right to explanation

Article 22 of the GDPR provides individuals with the right not to be subject to a
decision based solely on automated processing, including profiling, which produces legal
effects concerning them or similarly significantly affects them. Furthermore, individuals
have the right to obtain meaningful information about the logic involved in automated
decision-making processes and to challenge decisions made solely by algorithms.

Data protection impact assessments (DPIAs)

Under the GDPR, organizations are required to conduct DPIAs for processing activi-
ties that are likely to result in a high risk to the rights and freedoms of individuals. This
includes assessing the potential risks associated with algorithmic decision-making, such
as the risk of bias or discrimination, and implementing measures to mitigate these risks.

5.1.2 AI Act

The AI Act22, proposed by the European Commission in April 2021, has undergone several
revisions and amendments throughout its legislative process23

22https://www.europarl.europa.eu/topics/en/article/20230601STO93804/

eu-ai-act-first-regulation-on-artificial-intelligence, last accessed 27/O2/2024
23https://www.europarl.europa.eu/legislative-train/theme-a-europe-fit-for-the-digital-age/

file-regulation-on-artificial-intelligence, last accessed 27/O2/2024
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Introduced in April 2021, the Act aims to establish rules and standards for the de-
velopment, deployment, and use of AI systems across various sectors. Key provisions
include defining high-risk AI applications, imposing obligations on providers and users of
such systems, ensuring transparency and accountability in AI processes, and establishing
mechanisms for conformity assessment and enforcement.

Risk-based approach

The AI Act classifies AI according to its risk:

• Unacceptable risk, which is prohibited (e.g. social scoring systems and manipulative
AI).

• High risk, the regulation of which isthe subject of most of the text:

• Limited risk, which is ubject to lighter transparency obligations: developers and
deployers must ensure that end-users are aware that they are interacting with AI
(chatbots and deepfakes).

• Minimal risk, which is unregulated (such as spam filters)

High-Risk Systems

The majority of obligations fall on providers (developers) of high-risk AI systems.
High-risk AI systems encompass AI technologies utilized in various domains:

• Critical infrastructures, such as transportation, where malfunctions could jeopardize
citizen safety.

• Educational or vocational training, influencing access to education and career paths,
like exam scoring systems.

• Safety components of products, like AI in robot-assisted surgery, which impact
patient well-being.

• Employment management, including CV-sorting software affecting recruitment fair-
ness.

• Essential private and public services, such as credit scoring determining loan eligi-
bility.

• Law enforcement, where AI may affect fundamental rights through evidence evalu-
ation.

• Migration, asylum, and border control management, including document authentic-
ity verification.

• Administration of justice and democratic processes, where AI aids in applying laws
to specific cases.
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In addition to these domains, a system is considered high risk if it is used as a safety
component or a product covered by EU laws in Annex II of the Act and required to
undergo a third-party conformity assessment, or if they engage in profiling individuals, i.e.
if they automatically analyse personal data to evaluate different facets of a person’s life,
including their professional performance, financial status, health, preferences, interests,
reliability, behavior, location, or movements.

Obligations

While algorithmic fairness is not explicitly mentioned as a standalone concept, the
Act addresses related issues such as bias and transparency, which are key factors in
mitigating discriminatory outcomes. Specifically, the Act requires developers of high-
risk AI systems to adhere to transparency obligations, ensuring that users are aware of
the AI’s functionality, limitations, and potential biases. Moreover, developers are required
to document their AI systems’ design and training data, enabling authorities to assess
the system’s potential for bias or discriminatory outcomes.

5.2 Standards

The International Organization for Standardization24 (ISO) is an independent, non-governmental
international organization that develops and publishes international standards. The IEEE
Standard Association 25 outlines best practices for identifying and addressing bias in AI
systems and AI-aided decision-making, covering topics such as bias and fairness overview,
sources of unwanted bias, bias assessment metrics, and strategies for bias treatment. These
guidelines aim to enhance the accountability and transparency of AI systems across all
phases of their lifecycle, from data collection and training to continual learning, design,
testing, evaluation, and deployment. The document’s scope encompasses a comprehensive
examination of bias within AI systems, particularly concerning AI-aided decision-making,
offering measurement techniques and methods to mitigate bias-related vulnerabilities ef-
fectively.

24https://www.iso.org/home.html, last accessed 27/02/2024
25https://standards.ieee.org/ is an organization within the Institute of Electrical and Electronics Engi-

neers (IEEE) that develops global standards in various fields related to electrical engineering, electronics,
and information technology. The International Electrotechnical Commission26 (IEC) is a worldwide en-
tity responsible for the development and publication of international standards encompassing electrical,
electronic, and associated technologies. While ISO and IEC are recognized international standards orga-
nizations, IEEE SA is not a body formally authorized by any government, but rather a community.

5.2.1 ISO/IEC TR 24028

The aim of document ISO/IEC 24028:202027 is to analyze the factors influencing the trustworthiness
of systems utilizing AI. The document provides an overview of existing approaches that can support
trustworthiness in technical systems and discusses their potential application in AI systems. It also
addresses possible approaches to addressing vulnerabilities in AI systems related to trustworthiness.

5.2.2 ISO/IEC 27001:2013

The document ISO/IEC 27001:201328, last accessed 27/02/2024
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5.2.3 IEEE P7003

The IEEE P7003 Standard for Algorithmic Bias Considerations329 constitutes one of
eleven IEEE ethics-oriented standards presently in progress as a component of the IEEE
Global Initiative on Ethics of Autonomous and Intelligent Systems. Its primary objective
is to furnish individuals or organizations engaged in the development of algorithmic sys-
tems with a structured framework to prevent unintended, unjustified, and discriminatory
outcomes for users.

5.3 Non-Binding Instruments

A non-binding instrument is a document or agreement that does not impose legally en-
forceable obligations on the parties involved.

5.3.1 EU Artificial Intelligence Ethics Checklist

On April 8, 2019, the High-Level Expert Group on Artificial Intelligence (AI HLEG)
published a document titled ETHICS GUIDELINES FOR TRUSTWORTHY AI 30. This
document is not a framework directive or regulation of the EU and is therefore not legally
binding. However, it provides principles and requirements for AI systems and serves as
the basis for the aforementioned OECD agreement among states. The guidelines contain
7 Key Requirements that AI systems should meet to be considered trustworthy:

• Human agency and oversight

• Technical robustness and safety

• Privacy and data governance

• Transparency

• Diversity, non-discrimination, and fairness

• Societal and environmental well-being

• Accountability

The document includes an assessment list covering the key requirements of ethical AI and
provides guidance for their practical implementation.

5.3.2 Guidelines on Automated individual decision-making and Profiling

This document31addresses the implications of profiling and automated decision-making
under the GDPR, recognizing their increasing prevalence across various sectors such as
banking, healthcare, and marketing. While these practices offer benefits like increased ef-
ficiencies and tailored services, they also present risks to individuals’ rights and freedoms,

29https://ieeexplore.ieee.org/document/8452919, last accessed 27/02/2024
30https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai,

last accessed 27/02/2024
31https://ec.europa.eu/newsroom/article29/items/612053, last accessed 27/02/2024
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including privacy infringement and unjust discrimination. The GDPR introduces provi-
sions to mitigate these risks, emphasizing transparency and accountability. The guide-
lines clarify definitions, general provisions, and specific regulations regarding automated
decision-making, highlighting the importance of data protection impact assessments and
the role of data protection officers. it concludes with best practice recommendations and
a commitment from the Article 29 Data Protection Working Party (WP29) to monitor
implementation and potentially provide further guidance.
Specifically, the Annex lists good practices including the following recommendations,
which while not exhaustive, offer valuable guidance for controllers aiming to ensure al-
gorithmic fairness in solely automated decisions, including profiling as defined in Article
22(1):

• Conduct regular quality assurance checks on systems to guarantee equitable treat-
ment of individuals, irrespective of special categories of personal data or other fac-
tors.

• Implement algorithmic auditing procedures, involving rigorous testing of machine
learning algorithms to verify their intended functionality and prevent the generation
of discriminatory, erroneous, or unjustified outcomes.

• In cases where decision-making based on profiling significantly impacts individuals,
facilitate independent third-party audits by providing auditors with comprehensive
insights into the workings of the algorithm or machine learning system. These
measures aim to enhance transparency, accountability, and the elimination of biases
in automated decision-making processes.
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[28] Ankur Handa, Viorica Pătrăucean, Simon Stent, and Roberto Cipolla. 2016.
Scenenet: An annotated model generator for indoor scene understanding. 2016 IEEE
International Conference on Robotics and Automation (ICRA) (2016), 5737–5743.

[29] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in super-
vised learning. Advances in neural information processing systems 29 (2016).

[30] Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia Chmielin-
ski. 2020. The dataset nutrition label. Data Protection and Privacy, Volume 12:
Data Protection and Democracy 12 (2020), 1.

[31] Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and
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