

Lifelogging and Behaviour Modelling

ESR 10 – 3rd PhD seminar

Vienna, Austria 1 December, 2023 Wiktor Mucha Computer Vision Lab TU Wien

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 861091".

Presentation Agenda

- 1. Introduction
- 2. Contribution of this PhD
- 3. Progress to date
- 4. Dissemination overview
- 5. Future steps

1

Introduction

Aim and objectives of the PhD

Lifelogging and Behaviour Modelling - Wiktor Mucha

Introduction

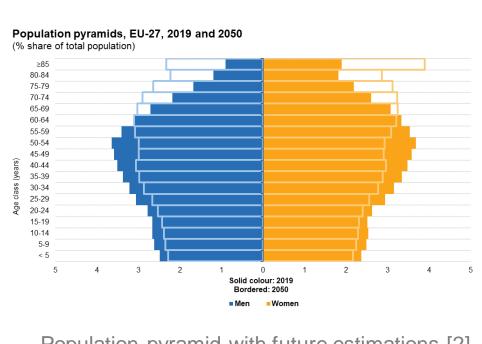
- Lifelogging → a technology that uses wearable sensors to gather and process data from the daily lives of an individual
- Using a wearable camera can illustrate in detail which activities the person wearing the camera has done during the day
- This work focuses on the possibilities of egocentric visual data processing for health and lifestyle improvement
- Egocentric → placing a camera on a human body giving a view from this person's perspective

User wearing a lifelogging device[1]

[1] https://newatlas.com/narrative-clip-2/35422/ visited on 20.01.2022


3

Motivation Behind the Thesis


- The ageing population demands new technological solutions to reduce the involved medical personnel
- The **technological progress** of electronic devices provides **new systems** for lifelogging and egocentric
- The early stage of research no products on the market
- New devices on the market

RayBan Stories[3]

DJI Action 2 [4]

Population pyramid with future estimations [2]

- [2] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Population_pyramids,_EU-27,_2019_and_2050_(%25_share_of_total_population)_AE2020.png visited on 24.09.2022
- [3] https://www.ray-ban.com/canada/en/electronics/ray-ban%20stories%20%7C%20round-shiny%20black/8056597705035 visited on 22.09.2022
- [4] https://www.gsmarena.com/the_dji_action_2_is_a_tiny_action_camera_made_big_by_its_multitude_of_accessories_and_mods-news-51608.php visited 14.04.2023

Application Examples

I. Action recognition

 \rightarrow Task of discovering action in the image/clip

II. Activity recognition

 \rightarrow Activity of Daily Living (ADL) differs from action detection in length

III. Food scene monitoring

 \rightarrow Food scene understanding, food detection, environment analysis

III. Social interaction monitoring

 \rightarrow Automated analysis for the social interaction pattern descriptions

→ Lack of social relations leads to a decrease in psychological well-being

Examples of actions in EPIC-KITCHEN dataset[5]

[5] https://epic-kitchens.github.io/2021 visited on: 24.09.2022

Contribution of this PhD

Research questions and planned progress

Lifelogging and Behaviour Modelling – Wiktor Mucha

RQ1: What **actions** and behaviours that **affect health** and well-being can be **tracked** for health improvement using **egocentric** video-based lifelogging **systems**. Is it possible to process egocentric images to assist with health-related tasks such as **rehabilitation**, **taking medication**. Can we **recognise** struggles to provide assistance?

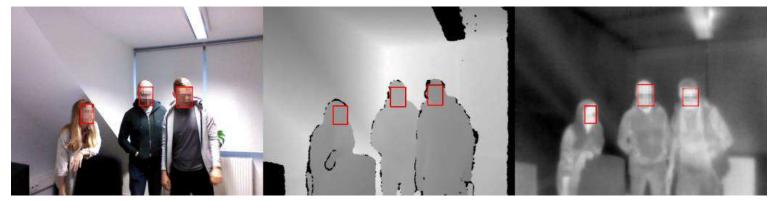
RQ2: How do **recent advances** in **egocentric hand pose** estimation compare with state-of-the-art techniques, including 3D pose-based methods for **action recognition**, in terms of the usability of 2D hand and object poses for egocentric action recognition tasks? Furthermore, how does performance vary when different types of pose input are used?

RQ3: What **strategies** and **methods** can be used to **improve performance** and **minimise** the differences **between datasets**, particularly in bridging the gap between laboratory conditions, with the aim of improving the generalisability and reliability of experimental results when using **hand pose based egocentric action recognition**?

- I. Improvement of short term video understanding through robust action recognition for fine-grained scenarios
- II. Introduction of novel health-related applications using egocentric imaging
- **III. Bridging** the gap between **laboratory** experiments and **health-related** applications

Progress to date

Summary of main findings



Lifelogging and Behaviour Modelling – Wiktor Mucha

Image Modalities and Privacy

- I. Research on various image modalities and their potential future applications for lifelogging
 - Using additional modalities can lead to improvement in the results
 - Comparison study of three image modalities (RGB, depth, thermal) in the example of Face Detection (FD) → FD is often a part of AAL systems, including egocentric lifelogging studies
 - The RGB sensor is not always necessary, and it's superior in the hardest FD scenario

Example of a correct detection on each image modality, form left RGB, depth and thermal image

Mucha, W., & Kampel, M. (2022, February). **Depth and thermal images in face detection-a detailed comparison between image modalities**. In 2022 the 5th International Conference on Machine Vision and Applications (ICMVA) (pp. 16-21).

Image Modalities and Privacy

II. Privacy issues in lifelogging and AAL devices

- AAL vision-based life-logging systems raise privacy concerns due to monitoring indyviduals
- There are contradictory statements about privacy of depth cameras
- Contributions → Factors and scenarios affecting privacy in depth images
 → Face Recognition (FR) performance study to determine possibility of identification

Same scene visible in deptn and RGB image.

Image Modalities and Privacy

Conclusions

- Depth sensors preserve more privacy due to the lack of texture information. FR performs accurately only in laboratory environments with a small group of individuals and high-sensor resolution
- Lifelogging with depth sensors requires custom hardware, the market is evolving (e.g. mobile phones)
- Enhancing or replacing RGB images with depth modality is beneficial in certain scenarios (e.g., high privacy requirement, dietary monitoring), but at this moment it is restricted by hardware and data availability

Mucha, W., & Kampel, M. (2022, June). **Beyond Privacy of Depth Sensors in Active and Assisted Living Devices.** In Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments (pp. 425-429).

Mucha, W., & Kampel, M. (2022, July). Addressing Privacy Concerns in Depth Sensors. In Computers Helping People with Special Needs: 18th International Conference, ICCHP-AAATE 2022, Lecco, Italy, July 11–15, 2022, Proceedings, Part II (pp. 526-533). Cham: Springer International Publishing.

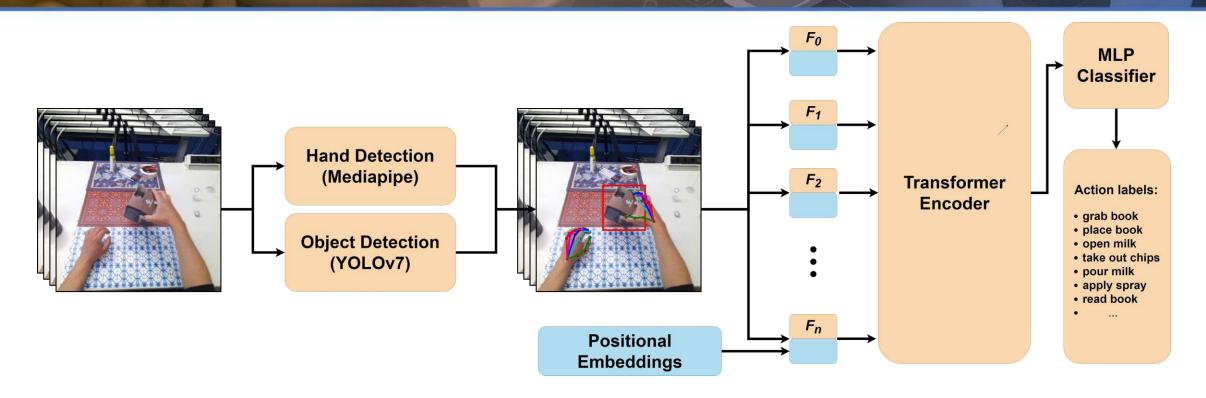
14

Egocentric Action Recognition with 2D Hand Pose

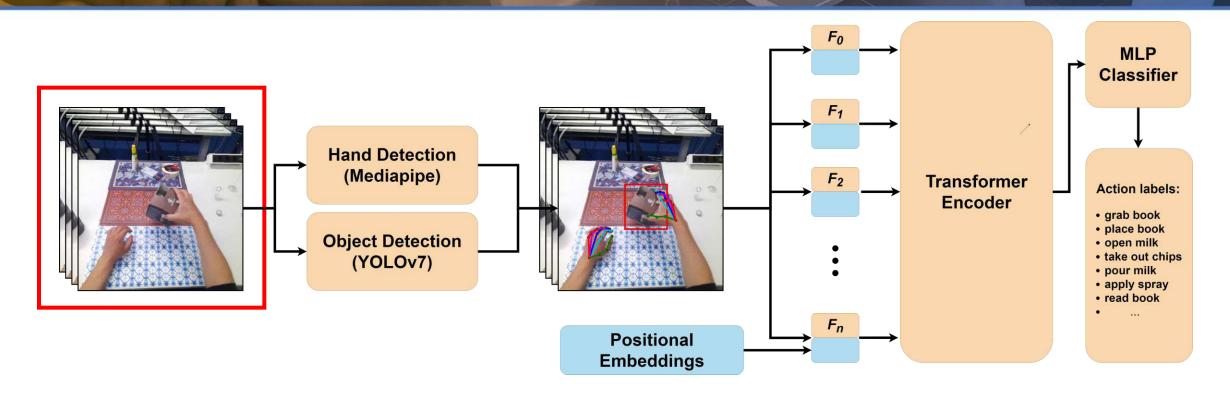
- Hand pose simplifies task of action recognition
- Action recognition finds application activities monitoring, e.g., for health reasons
- Release of high quality, comfortable RGB devices like RayBan Stories
- State-of-the-art methods for 3D egocentric hand pose result in error equal to 37 mm
 - \rightarrow (20% considering avg. hand)
- No wearable RGB-D devices on the market

Self-made wearable RGB-D camera and RayBan glasses[8]

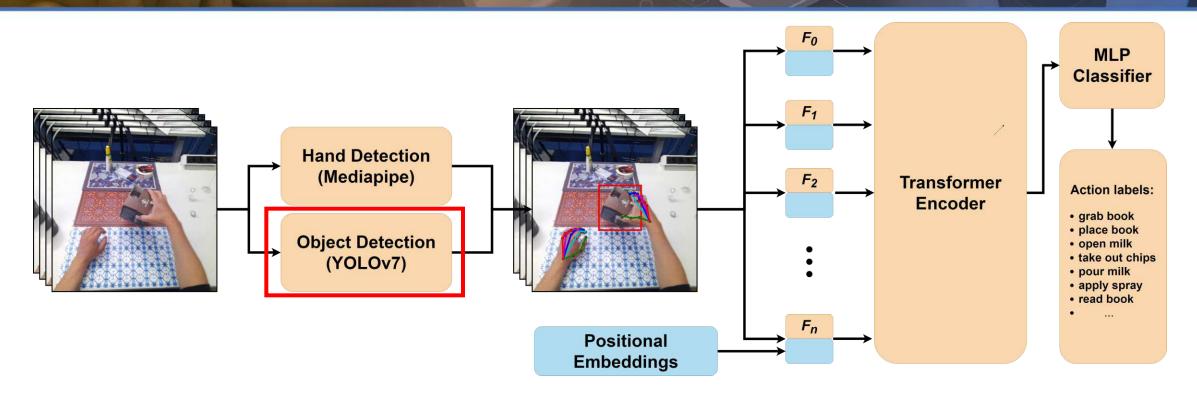
RayBan Stories[9]


DJI Action 2 [10]

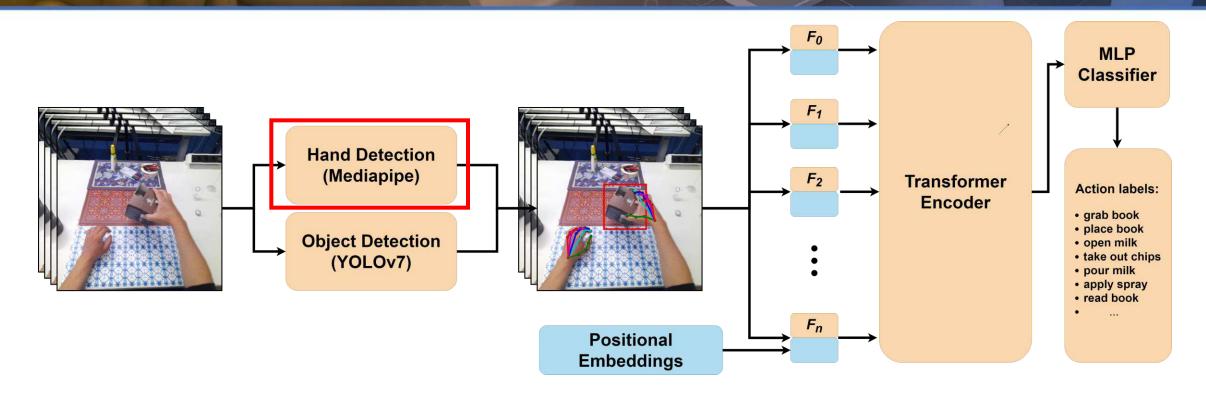
[8] Kwon, T et al. (2021). H2o: Two hands manipulating objects for first person interaction recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision
[9] https://www.ray-ban.com 14.09.2023
[10] https://www.gsmarena.com 14.09.2023


Lifelogging and Behaviour Modelling – Wiktor Mucha

- Usage of hands and objects as input for supervised sequence model
- Allows to use of **pre-trained** models reducing the learning costs
- Allows adaptations for various health-related tasks which involve hands manipulation

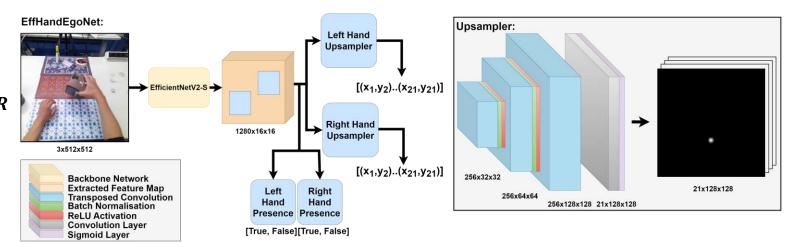


- Input sequence of frames $f_1, f_2...f_n$ where $n \in [1, 2...N]$
- Actions shorter than N frames \rightarrow zero padding
- Actions longer than *N* frames → uniform subsampling

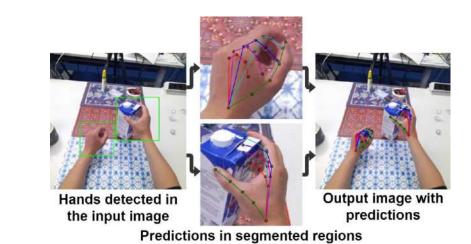


- Implemented using state-of-the-art YOLOv7 model
- Trained on H2O Dataset training subset
- Object described as $Po_{bb}^{i}(x, y)$ where $i \in [1..4]$ corresponds to the **bounding box corners**
- Pol describes object label

• Task of estimating the position of 21 hand keypoints in 2D space using RGB image



Egocentric 2D Hand Pose


- I. Single Hand Approach \rightarrow *EffHandNet*:
- Pre-trained hand detector in the egocentric input image
- Hand pose prediction in segmented regions R_1 , R_2
- Feature extractor:
 - → EfficientNetV2-S [11]
- Prediction head:
 - \rightarrow Sequence of transposed convolution resulting in heatmaps

II. Egocentric Approach → EffHandEgoNet

- Handness prediction module H_L , H_R
- Two up-sampling heads
- Improves modelling of hand-object interaction
- Output hand pose: $Ph_l^i = (x, y)$

[11] Mingxing Tan and Quoc Le, "Efficientnetv2: Smaller models and faster training," in International Conference on Machine Learning. PMLR, 2021, pp. 10096–10106.

Single Hand Network:

TABLE I

RESULTS OF SINGLE-HAND MODELS ON FreiHAND dataset.

Method	PCK0.2↑	EPE↓	AUC↑
test subset from 1	random data	split 80/1	0/10
PoseResNet50 [5]	99.20%	3.27	0.868
MediaPipe	71.77%	7.45	0.797
Santavas et al. [16]		4.00	0.870
EffHandNet	98.70%	2.24	0.921
EffHandNet+P	99.32%	1.59	0.935
finc	al test subset		
MediPipe	81.73%	5.29	0.839
PoseResNet50	87.48%	4.32	0.860
EffHandNet	88.76%	4.19	0.865
EffHandNet+P	91.08%	3.67	0.879

Egocentric Performance:

TABLE II

RESULTS FOR 2D HAND POSE ESTIMATION IN EGOCENTRIC H2O dataset.

Method:	A. 1.↑	A. r.↑	PCK0.2↑	EPE↓	AUC [↑]
PoseResNet50	99.91%	99.04%	74.42%	26.69	0.814
MediaPipe	94.71%	99.17%	86.22%	21.22	0.851
EffHandNet	99.91%	99.04%	76.27%	22.52	0.820
EffHandEgoNet	100%	99.83%	97.38%	9.80	0.907

 Estimating hand pose in egocentric vision requires modelling complex hand-object interactions. For this scenario, the performance of the approach based on hand detection is not sufficient.

Single Hand Network:

TABLE I

RESULTS OF SINGLE-HAND MODELS ON FreiHAND dataset.

Method	PCK0.2↑	EPE↓	AUC↑
test subset from 1	andom data	split 80/1	0/10
PoseResNet50 [5]	99.20%	3.27	0.868
MediaPipe	71.77%	7.45	0.797
Santavas et al. [16]	-	4.00	0.870
EffHandNet	98.70%	2.24	0.921
EffHandNet+P	99.32%	1.59	0.935
find	al test subset		
MediPipe	81.73%	5.29	0.839
PoseResNet50	87.48%	4.32	0.860
EffHandNet	88.76%	4.19	0.865
EffHandNet+P	91.08%	3.67	0.879

Egocentric Performance:

TABLE II

RESULTS FOR 2D HAND POSE ESTIMATION IN EGOCENTRIC H2O dataset.

Method:	A. 1.↑	A. r.↑	PCK0.2↑	EPE↓	AUC [↑]
PoseResNet50	99.91%	99.04%	74.42%	26.69	0.814
MediaPipe	94.71%	99.17%	86.22%	21.22	0.851
EffHandNet	99.91%	99.04%	76.27%	22.52	0.820
EffHandEgoNet	100%	99.83%	97.38%	9.80	0.907

 Estimating hand pose in egocentric vision requires modelling complex hand-object interactions. For this scenario, the performance of the approach based on hand detection is not sufficient.

Single Hand Network:

TABLE I

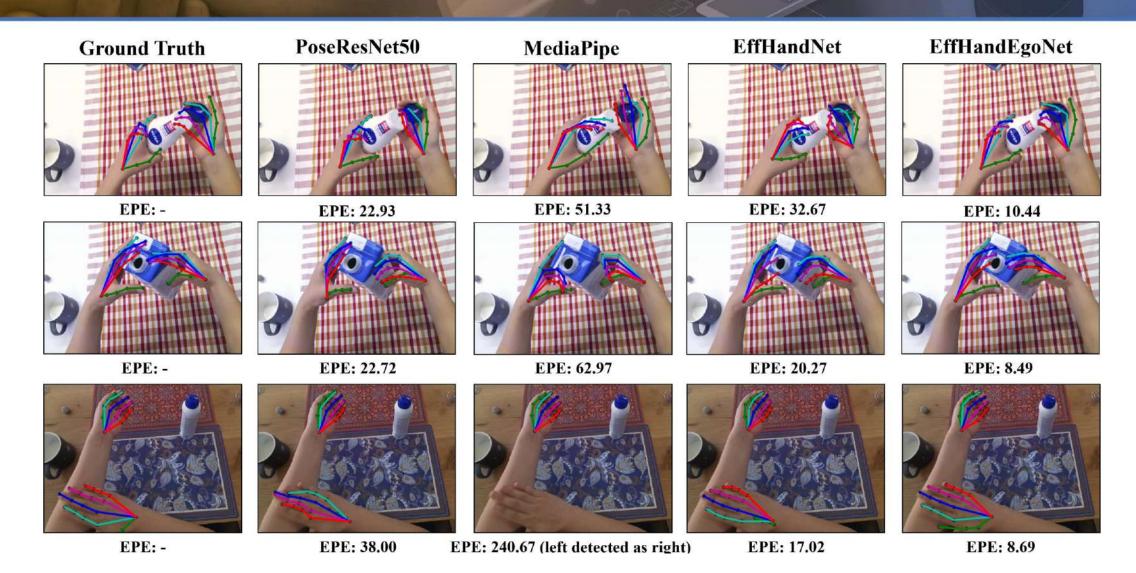
RESULTS OF SINGLE-HAND MODELS ON FreiHAND dataset.

Method	PCK0.2↑	EPE↓	AUC↑
test subset from 1	andom data	split 80/1	0/10
PoseResNet50 [5]	99.20%	3.27	0.868
MediaPipe	71.77%	7.45	0.797
Santavas et al. [16]	ж	4.00	0.870
EffHandNet	98.70%	2.24	0.921
EffHandNet+P	99.32%	1.59	0.935
find	al test subset		
MediPipe	81.73%	5.29	0.839
PoseResNet50	87.48%	4.32	0.860
EffHandNet	88.76%	4.19	0.865
EffHandNet+P	91.08%	3.67	0.879

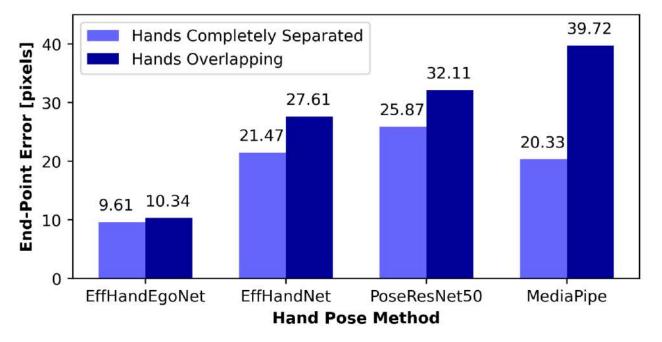
Egocentric Performance:

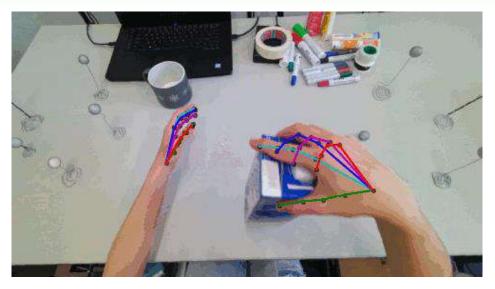
TABLE II

RESULTS FOR 2D HAND POSE ESTIMATION IN EGOCENTRIC H2O dataset.

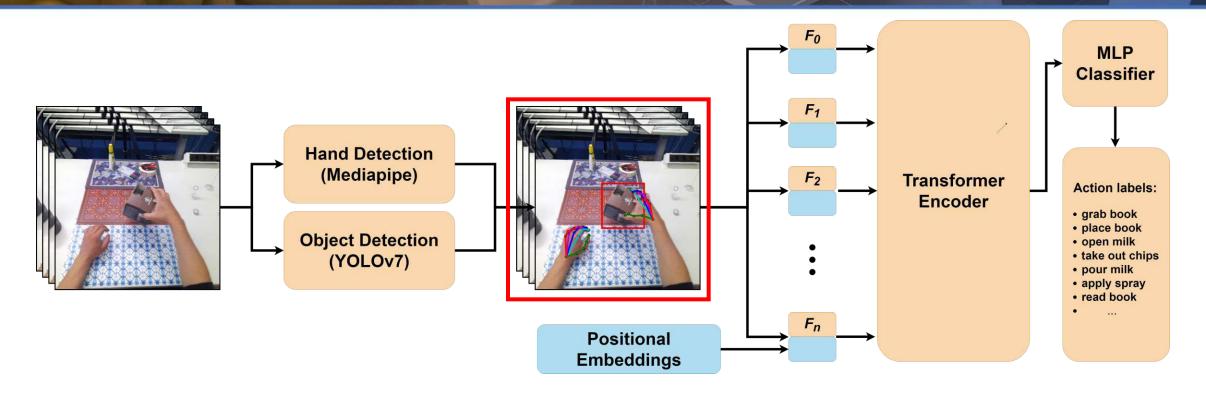

Method:	A. 1.↑	A. r.↑	PCK0.2↑	EPE↓	AUC [↑]
PoseResNet50	99.91%	99.04%	74.42%	26.69	0.814
MediaPipe	94.71%	99.17%	86.22%	21.22	0.851
EffHandNet	99.91%	99.04%	76.27%	22.52	0.820
EffHandEgoNet	100%	99.83%	97.38%	9.80	0.907

 Estimating hand pose in egocentric vision requires modelling complex hand-object interactions. For this scenario, the performance of the approach based on hand detection is not sufficient.

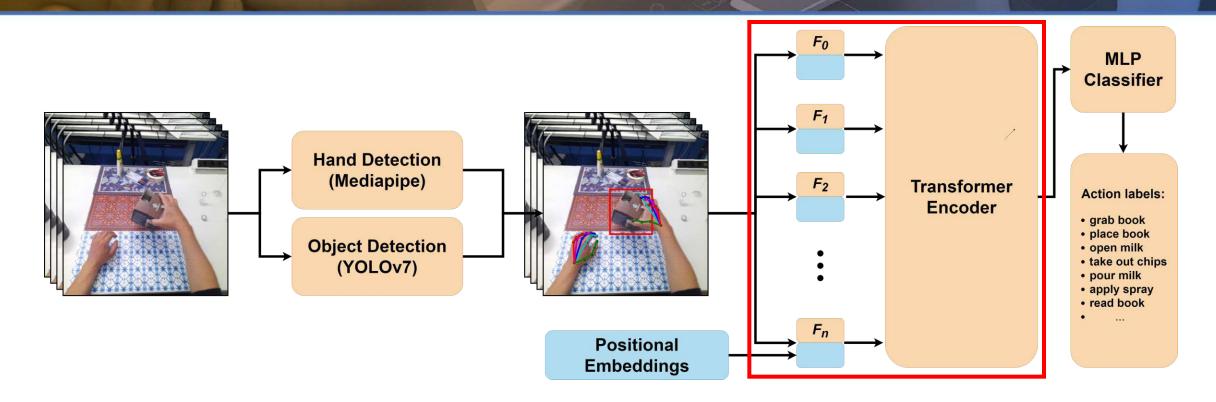

Egocentric 2D Hand Pose: Qualitative Results



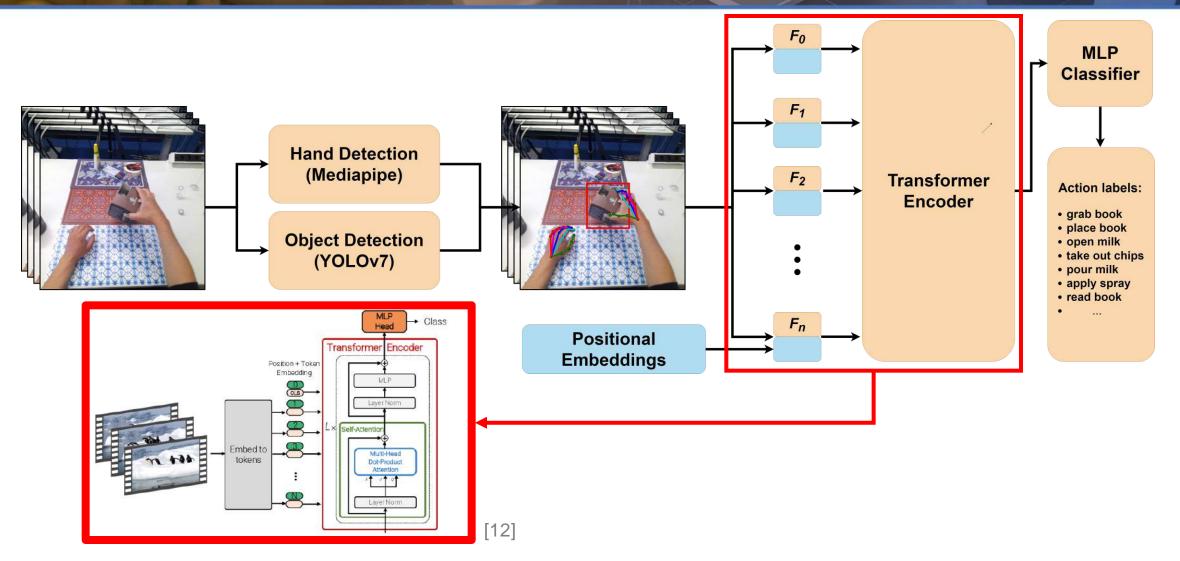
Performance in overlapping scenario:

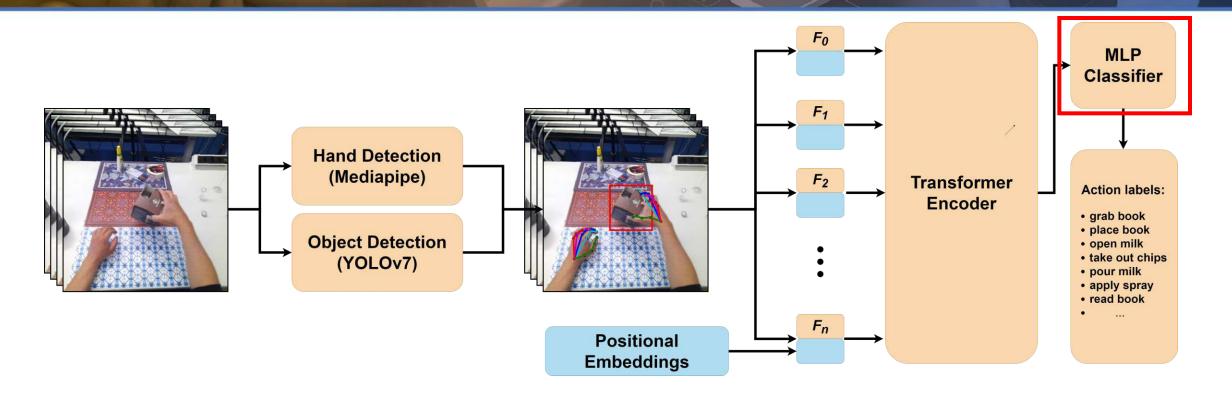


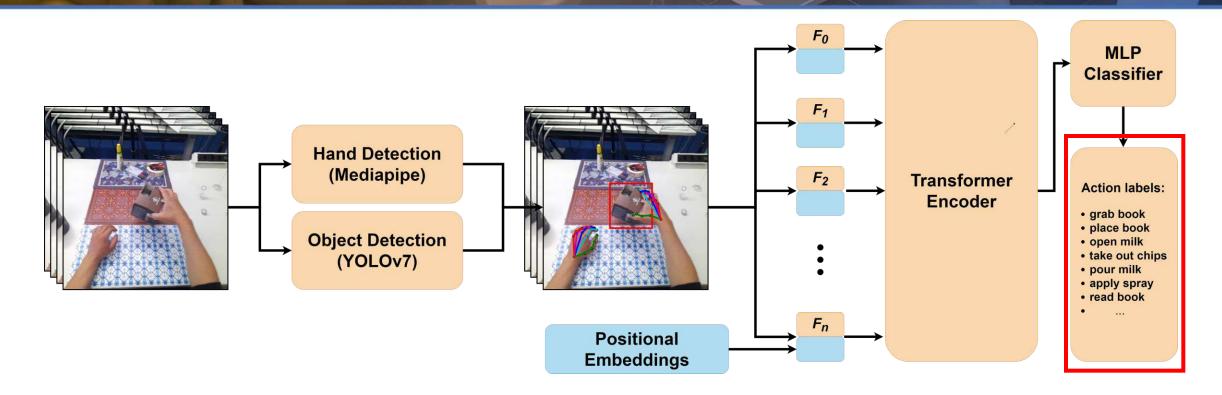
Submitted: Mucha W., Kampel M. (2023) "In My Perspective, In My Hands: Accurate Egocentric 2D Hand Pose", The 18th IEEE International Conference on Automatic Face and Gesture Recognition - FG 2024



- Each frames describes: $f_n = Ph_l^i(x, y) Ph_r^i(x, y) Po_{bb}^i(x, y) P_{ol}$
- Sequence of frames: $V_{seq} = [f_1, f_2, f_n]$






[12] Arnab et al., ViViT: A Video Vision Transformer. 2021 IEEE/CVF International Conference on Computer Vision (ICCV) Lifelogging and Behaviour Modelling – Wiktor Mucha

Action Recognition in H2O Dataset:

TABLE I

RESULTS IN ACCURACY OF VARIOUS ACTION RECOGNITION METHODS

ON H2O Dataset INCLUDING OUR METHODS.

Method:	Test [%] ↑
H+O [26] (3D-based)	68.88
ST-GCN [34] (3D-based)	73.86
I3D [5] (None-pose-based)	75.21
SlowFast [13] (None-pose-based)	77.69
TA-GCN [16] (3D-based)	79.25
OurMediaPipe (2D-based)	79.33
OurPoseResNet50 (2D-based)	80.99
OurEffHandNet (2D-based)	83.05
Wan et al. [31] (3D-based)	86.36
OurGT (2D-based)	92.97
Our (2D-based)	91.32

Action Recognition in FPHA Dataset:

TABLE II	
----------	--

RESULTS IN ACCURACY OF VARIOUS ACTION RECOGNITION METHODS

ON FPHA Dataset INCLUDING OUR METHOD.

Method:	Test [%] ↑
Garcia et al. [14] (3D-based)	78.73
H+O [26](3D-based)	82.43
Wan et al. [31] (3D-based)	94.09
Sabater et al. [22] (3D-based)	95.93
OurGT (2D-based)	94.43
Our (2D-based)	90.61

- 2D Hand Post is robust for egocentric action recognition
- Accurate pose estimation is essential for action recognition

Action Recognition in H2O Dataset:

TABLE I

RESULTS IN ACCURACY OF VARIOUS ACTION RECOGNITION METHODS

ON H2O Dataset INCLUDING OUR METHODS.

Method:	Test [%] ↑
H+O [26] (3D-based)	68.88
ST-GCN [34] (3D-based)	73.86
I3D [5] (None-pose-based)	75.21
SlowFast [13] (None-pose-based)	77.69
TA-GCN [16] (3D-based)	79.25
OurMediaPipe (2D-based)	79.33
OurPoseResNet50 (2D-based)	80.99
OurEffHandNet (2D-based)	83.05
Wan et al. [31] (3D-based)	86.36
OurGT (2D-based)	92.97
Our (2D-based)	91.32

Action Recognition in FPHA Dataset:

TABLE II	
----------	--

RESULTS IN ACCURACY OF VARIOUS ACTION RECOGNITION METHODS

ON FPHA Dataset INCLUDING OUR METHOD.

Method:	Test [%] ↑
Garcia et al. [14] (3D-based)	78.73
H+O [26](3D-based)	82.43
Wan et al. [31] (3D-based)	94.09
Sabater et al. [22] (3D-based)	95.93
OurGT (2D-based)	94.43
Our (2D-based)	90.61

- 2D Hand Post is robust for egocentric action recognition
- Accurate pose estimation is essential for action recognition

Action Recognition in H2O Dataset:

TABLE I

RESULTS IN ACCURACY OF VARIOUS ACTION RECOGNITION METHODS

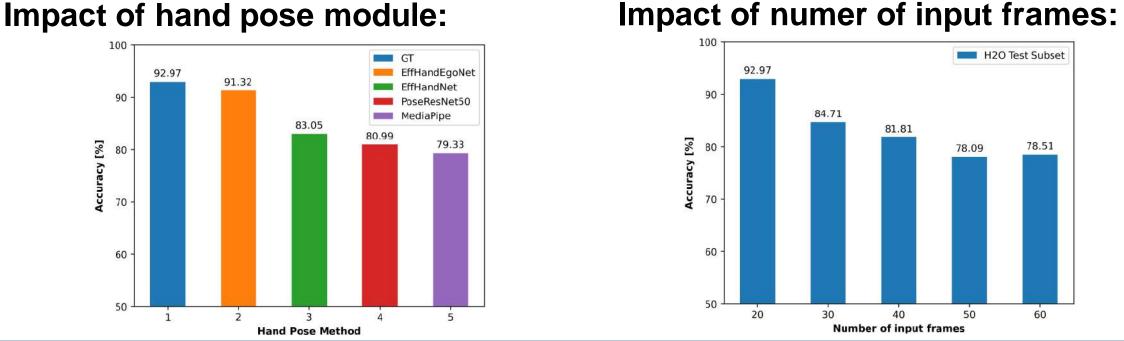
ON H2O Dataset INCLUDING OUR METHODS.

Method:	Test [%] ↑
H+O [26] (3D-based)	68.88
ST-GCN [34] (3D-based)	73.86
I3D [5] (None-pose-based)	75.21
SlowFast [13] (None-pose-based)	77.69
TA-GCN [16] (3D-based)	79.25
OurMediaPipe (2D-based)	79.33
OurPoseResNet50 (2D-based)	80.99
OurEffHandNet (2D-based)	83.05
Wan et al. [31] (3D-based)	86.36
OurGT (2D-based)	92.97
Our (2D-based)	91.32

Action Recognition in FPHA Dataset:

TABLE II	
----------	--

RESULTS IN ACCURACY OF VARIOUS ACTION RECOGNITION METHODS


ON FPHA Dataset INCLUDING OUR METHOD.

Method:	Test [%] ↑
Garcia et al. [14] (3D-based)	78.73
H+O [26](3D-based)	82.43
Wan et al. [31] (3D-based)	94.09
Sabater et al. [22] (3D-based)	95.93
OurGT (2D-based)	94.43
Our (2D-based)	90.61

- 2D Hand Post is robust for egocentric action recognition
- Accurate pose estimation is essential for action recognition

Presented: Mucha W., Kampel M. (2023) "Human Action Recognition in Egocentric Perspective Using 2D Object and Hands Pose", EPIC Workshop, The Conference on Computer Vision and Pattern Recognition (CVPR2023), June 2023, Vancouver, Canada

Mucha W., Kampel M. "Hands, Objects, Action! Egocentric 2D Hand-based Action Recognition", 14th International Conference on Computer Vision Systems (ICVS), September 2023, Vienna, Austria

Submitted: Mucha W., Kampel M. (2023) "Towards Assistive Technology with Egocentric Action Recognition using 2D Hand and Object Pose", The 18th IEEE International Conference on Automatic Face and Gesture Recognition - FG 2024

Struggle Determination

2nd secondment – University of Bristol

- Determination of struggle level in three different task
- Binary and 4-way determination

Tower of Hanoi

Tent Assembly

Pipes Assembly

Lifelogging and Behaviour Modelling - Wiktor Mucha

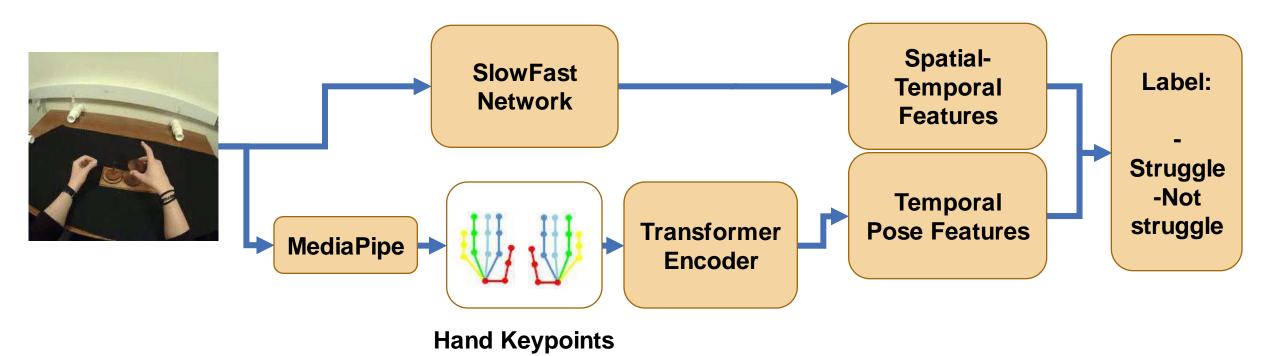
Struggle Determination

Motivation:

→ Correct struggle recognition leads to robust assistance for individuals

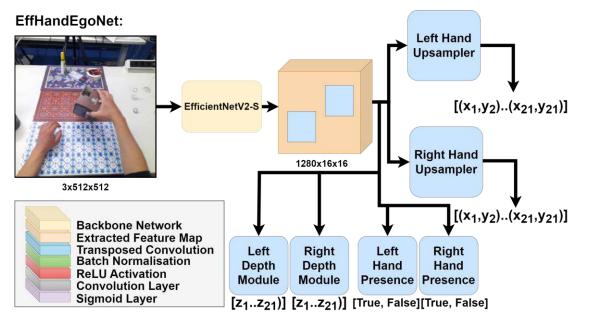
Current results and outcomes:

- **Binary** determination with **89%** of accuracy
- Best working with an approach merging hand pose information and semantic features from image
- State-of-the-art hand pose methods do not work correctly in these environments



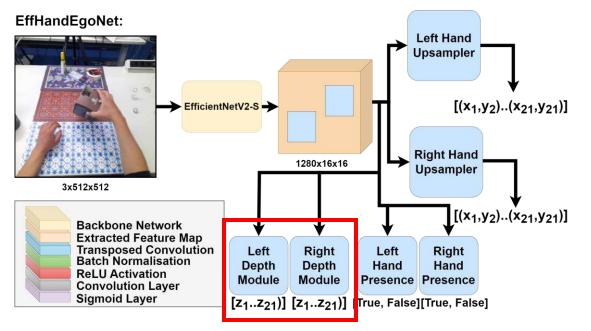
Struggle Determination

Proposed approach:



I. Extending EffHandEgoNet to 3D

- Architecture with regressions module for estimation of z coordinate representing depth
- Regression head + upsampler = 2.5D coordinates (image space)
- Pinhole camera model transformation to 3D



I. Extending EffHandEgoNet to 3D

- Architecture with regressions module for estimation of z coordinate representing depth
- Regression head + upsampler = 2.5D coordinates (image space)
- Pinhole camera model transformation to 3D

I. Extending EffHandEgoNet to 3D

- Architecture with regressions module for estimation of z coordinate representing depth
- Regression head + upsampler = 2.5D coordinates (image space)
- Pinhole camera model transformation to 3D

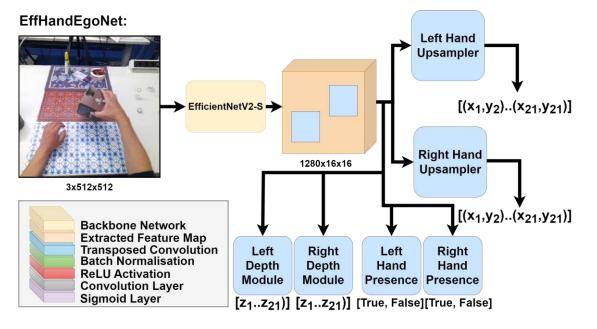


Table 1: Results of 3D hand Pose estimation in egocentric H2O Dataset. All results provided in mm in camera space

Method	Left hand	Right hand	Both
LPC [3]	39.56	41.87	40.72
H+O [5]	41.42	38.86	40.14
H2O [4]	41.45	37.21	39.33
HTT [6]	35.02	35.63	35.33
Cho et al. [2]	24.40	25.80	25.10
THOR-Net [1]	36.80	36.50	36.65
Our (Not masked)	31.24	35.06	33.15
Our (Masked)	22.15	28.37	25.20

40

Depth Estimation

(DPT-Hybrid)

Masking

I. Masking using estimated depth information

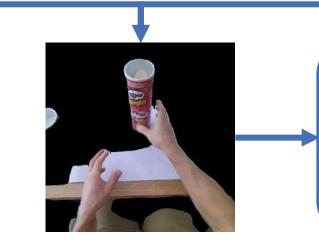
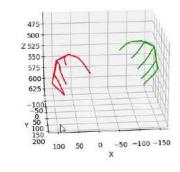


 Table 1: Results of 3D hand Pose estimation in egocentric H2O Dataset. All results provided in mm in camera space


 Method
 Left hand
 Right hand
 Both

 LPC [3]
 39.56
 41.87
 40.72

Method	Left hand	Right hand	Both
LPC [3]	39.56	41.87	40.72
H+O [5]	41.42	38.86	40.14
H2O [4]	41.45	37.21	39.33
HTT [6]	35.02	35.63	35.33
Cho et al. [2]	24.40	25.80	25.10
THOR-Net [1]	36.80	36.50	36.65
Our (Not masked)	31.24	35.06	33.15
Our (Masked)	22.15	28.37	25.26

Dissemination overview

Finished and planned publications

Lifelogging and Behaviour Modelling – Wiktor Mucha

Published Research:

Mucha W., Kampel M. (2022) "**Depth and Thermal Images in Face Detection – A Detailed Comparison Between Image Modalities**", The 5th International Conference on Machine Vision and Applications (ICMVA 2022), February 18-20, 2022, Singapore

Mucha W., Kampel M. (2022) "**Beyond Privacy of Depth Sensors in Active and Assisted Living Devices**", The 15th PErvasive Technologies Related to Assistive Environments Conference – PrivAw Workshop, June 29 – July 1, 2022, Corfu, Greece

Mucha W., Kampel M. (2022) "Addressing Privacy Concerns in Depth Sensors", Joint International Conference on Digital Inclusion, Assistive Technology & Accessibility – ICCHP-AAATE 2022, July 11-15, 2022, Lecco, Italy

Mucha W., Kampel M. "Hands, Objects, Action! Egocentric 2D Hand-based Action Recognition", Accepted in the 14th International Conference on Computer Vision Systems (ICVS), September 2023, Vienna, Austria

Planned Publications:

• Papers under the review:

Mucha W., Kampel M. "In My Perspective, In My Hands: Accurate Egocentric 2D Hand Pose", The 18th IEEE International Conference on Automatic Face and Gesture Recognition - FG 2024

\$)	Δ
=	=

Mucha W., Kampel M. "Towards Assistive Technology with Egocentric Action Recognition using 2D Hand and Object Pose", The 18th IEEE International Conference on Automatic Face and Gesture Recognition - FG 2024

• Planned papers:

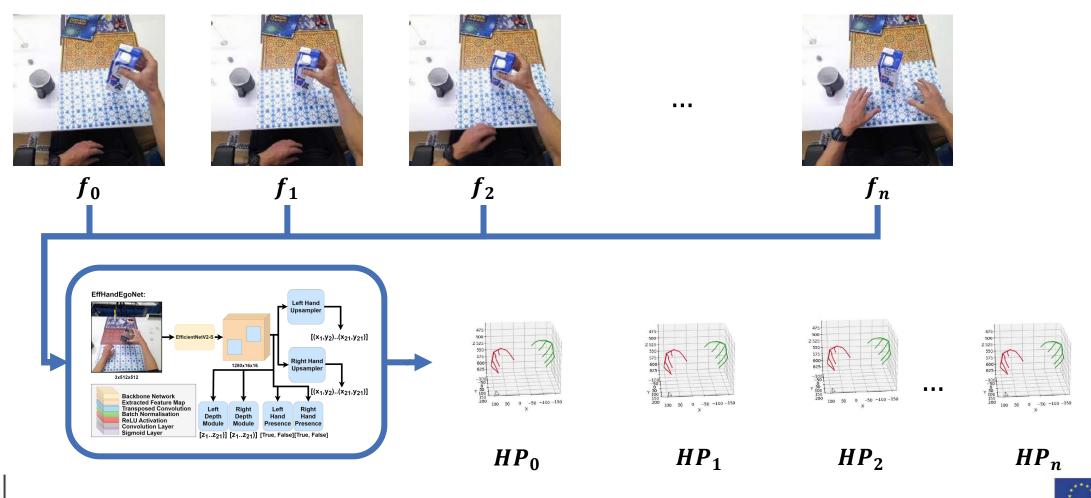
- Methodology:
 - \rightarrow 3D Hand Pose in egocentric vision
- Applications:
 - \rightarrow Hand rehabilitation with egocentric vision
 - \rightarrow Medication intake monitoring

Next steps of my PhD

Work to be completed to finalise PhD

Lifelogging and Behaviour Modelling – Wiktor Mucha

Struggle Determination


I. Further work for struggle determination project:

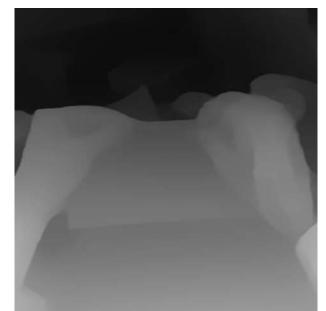
- Data collection in collaboration with the University of Bristol
 - \rightarrow Introduction of more tasks
 - \rightarrow Increasing data in current tasks
- Incorporate new methods such as self-supervision
- Transferring hand pose models to struggle dataset
- Struggle detection for future action support

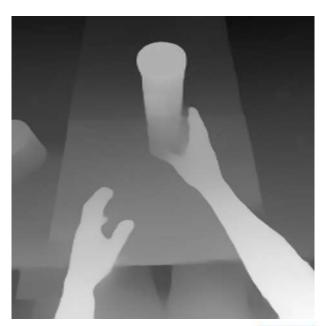
II. Embedding temporal information for improvement of 3D pose

III. Domain Adaptation Improvement

Four datasets for egocentric hand pose estimation:

- FPHA
- H2O
- AssemblyHands
- HoloAssist


Difficult to annotate


Variance in image quality, distortion, type

Potential solution:

 Self-supervised learning through depth estimation task:

FPHA

H2O

Health Related Tasks

IV. Upper-limb rehabilitation with egocentric vision for stroke

Motivation:

- Stroke remains the third leading cause of mortality and
- **disability** worldwide, [1].
- Approximately 85% of stroke patients worldwide experience hand dysfunction [2].
- No egocentric studies available

Challenges:

- Exercise recognition
- Repetition counting
- Exercise detection
- Form evaluation

[13] V. L. Feigin et al., "Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019," The Lancet Neurology, vol. 20, no. 10, pp. 795–820, 2021

[14] D. Cao et al., "Efficacy and safety of manual acupuncture for the treatment of upper limb motor dysfunction after stroke: Protocol for a systematic review and meta-analysis," Plos one, vol. 16, no. 11, p. e0258921, 2021.

49

Timeline

Task	2021		2022			2023						2025					
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	Q1
Initial research on life logging and AAL devices												2023					
Modality comparison study			Ρ														
Privacy with depth				ΡP								December					
Proficiency evaluation					R.P.	Pres.						Vienna,					
Hand based action recognition									Р		Ρ						
Egocentric hand pose paper											Р	seminar in					
3D hand pose for AR												AL PhD	Р				
Struggle determination												Last visuAAL			Р		
Hand rehabilitation with egocentric view												Last			Р		
Secondments																	
Thesis Writing																The	esis

Thank you!

Wiktor Mucha

TU Wien

wiktor.mucha@tuwien.ac.at

