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Introduction
Egocentric vision and hand pose estimation

1

Understanding Human Behaviour With Wearable Cameras Based on Information From the Human Hand – Wiktor Mucha



Introduction 2

User wearing a lifelogging device[1]

• Using a wearable camera can illustrate in detail which
activities the person wearing the camera has done
during the day

• Egocentric → placing a camera on a human body
giving a view from this person’s perspective

• 2D Hand Pose Estimation → Reconstruction of 21
points describing the finger joints, palm and wrist
positions in 2D space

[1] https://newatlas.com/narrative-clip-2/35422/ visited on 20.01.2022
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RayBan Stories[3]
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Egocentric 

Behaviour 

Analysis

Long-Term 

Behaviour Analysis

Short-Term 

Behaviour Analysis

Division of egocentric behaviour analysis

The difference between action 

and activity visualized [7]

[7] Nguyenet al., Recognition of Activities of Daily Living with Egocentric Vision: A Review. Sensors (Basel, Switzerland) vol. 16,1 72. 7 Jan. 2016
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Long-Term Behaviour Analysis vs. Short-Term Behaviour Analysis

Routines vs. real-time

Registration of activities vs. detailed understanding of actions

Identifying where people eat vs. identifying food and estimating micro/macro ingredients

Division of egocentric behaviour analysis
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Egocentric Actions 5

[5] https://epic-kitchens.github.io/2021 visited on: 24.09.2022

Examples of actions in EPIC-KITCHEN dataset[5]
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Observations from Egocentric Recordings 6

• Hands play the main role in the scene next to the manipulated object

• Most of the actions are different hand movements related to the 
object, e.g. rotating, picking up

• Several ADLs based on hands:
• Eating

• Drinking

• Taking medication
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Estimation of Hand Pose
In the Egocentric View

7
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Egocentric 2D Hand Pose 8

Single Hand Approach → EffHandNet:
• Pre-trained hand detector in the egocentric input image

• Hand pose prediction in segmented regions 𝑹𝟏, 𝑹𝟐

• Feature extractor:

→ EfficientNetV2-S [11]

• Prediction head:

→ Sequence of transposed convolution resulting in 

heatmaps

[11] Mingxing Tan and Quoc Le, “Efficientnetv2: Smaller models and faster training,” in International Conference on Machine Learning. PMLR, 2021, pp. 10096–10106.
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Pros and Cons:

+More datasets available

-Multiplied forward pass through backbone

network

-Considers region of a single hand only



Egocentric 2D Hand Pose 9

Egocentric Approach → EffHandEgoNet

• Handness prediction module 𝑯𝑳, 𝑯𝑹

• Two up-sampling heads

• Improves modelling 

of hand-object interaction

• Output hand pose: 𝑷𝒉𝒍
𝒊 = (𝒙, 𝒚)

Understanding Human Behaviour With Wearable Cameras Based on Information From the Human Hand – Wiktor Mucha

Pros and Cons:

-Less public data

+Single forward pass in the backbone 

stage

+Learning hand-hand interactions



Evaluation 10

EffHandNet:

• Bets result in non-egocentric

FreiHand dataset
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Evaluation – Egocentric Hand Pose

EffHandNet:

• Poor performance in hand detection

stage

• High End-Point Error (EPE) (pixels)

EffHandEgoNet:

• Best performance on both datasets
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Pose Error in Edge Scenarios

Pose error for different methods in edge 

scenarios for overlapping and fully 

separated hands:

• Bottom-up the smallest error

• Bottom-up performs with minimal

difference between scenarios

• Detection-based methods result in higher 

difference between scenarios
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13Egocentric 3D Hand Pose 

I. Extending EffHandEgoNet to 3D  
• Architecture with regressions module for estimation of z coordinate 

representing depth

• Regression head + upsampler = 2.5D coordinates (image space)

• Pinhole camera model transformation to 3D
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14Egocentric 3D Hand Pose with SHARP
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SHARP: Segmentation of Hands 

and Arms by Range using Pseudo-

Depth



15SHARP and Segmentation Distance
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16Qualitative Results of 3D Hand Pose Estimation with SHARP
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Applications of Hand Pose Estimation
In the Egocentric View
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Action Recognition
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Hand-based Action Recognition - Overview

• Usage of hands and objects as input for supervised sequence model

• Allows to use of pre-trained models reducing the learning costs

19
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Hand-based Action Recognition - Overview

• Input sequence of frames 𝒇𝟏, 𝒇𝟐. . 𝒇𝒏 where 𝒏 ∈ 𝟏, 𝟐. . 𝟐𝟎
• Actions shorter than 𝒏 frames → zero padding

• Actions longer than 𝒏 frames → uniform subsampling 
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Hand-based Action Recognition - Overview

• Implemented using state-of-the-art YOLOv7 model

• Object described as 𝑷𝒐𝒃𝒃
𝒊 (𝒙, 𝒚) where 𝒊 ∈ 𝟏. . 𝟒 corresponds to the bounding box corners

• 𝑷𝒐𝒍 describes object label
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Hand-based Action Recognition - Overview

• We implement two different approaches for hand pose estimation: 

→ top-down and bottom-up
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Hand-based Action Recognition - Overview

• Each frames describes: 𝒇𝒏 = 𝑷𝒉𝒍
𝒊 (𝒙, 𝒚) 𝑷𝒉𝒓

𝒊 (𝒙, 𝒚)𝑷𝒐𝒃𝒃
𝒊 (𝒙, 𝒚)𝑷𝒐𝒍

• Sequence of frames: 𝑽𝒔𝒆𝒒 = [𝒇𝟏, 𝒇𝟐. . 𝒇𝒏]
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Action Recognition and Hand Pose Models

Action recognition with different hand pose 

estimation methods:

• Strong correlation in action

recognition accuracy of predicted hand 

poses when we train with ground truth

skeletons and test with prediction

• Similar observation for training and

testing with estimates
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Evaluation - Action Recognition

State-of-the-art results despite using 

only 2D information

• Best results in H2O Dataset

• Competitive result in FPHA Dataset
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Inference test performed over 1000 runs on NVIDIA RTX 3060:

• Circles in the figure represent the number of trainable parameters

• Our method has the fastest inference and highest action recognition

26Inference time with 2D Hand Pose
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Action Recognition Results with SHARP
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Inference Time with SHARP
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Struggle Determination
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Struggle Determination 30

Determination of struggle level in three different task → binary and 4-way

Tower of Hanoi Tent Assembly Pipes Assembly

Motivation:

→Correct struggle recognition leads to robust assistance for individuals

Current results and outcomes:

• Binary determination with 89% of accuracy

• Best when merging hand pose information and semantic features from image
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Hand Rehabilitation
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32Upper-limb Rehabilitation with Egocentric Vision for Stroke Patients

Motivation:

• Stroke remains the third leading cause of mortality and disability worldwide

• Approximately 85% of stroke patients worldwide experience hand dysfunction

• No egocentric studies available

Examples of common hand rehabilitation exercises for stroke patients

Wrist Curls Ball Grip Palm Up and Down
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33Upper-limb Rehabilitation with Egocentric Vision for Stroke Patients

Challenges:

Exercise recognition

Repetition counting

Exercise detection

Form evaluation
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Preliminary stage

• 9 users of different age (25-88 years old)

• 13 common exercises for each hand → 25 exercises

• 97% recognition of exercises in validation subset with SlowFast

Network



Conclusion

• Bottom-up methods tend to fail in egocentric perspective for hand pose

estimation

• In certain scenarios, i.e. reducing inference time, 2D pose information is a

promising alternative to estimated 3D pose for egocentric action

recognition

• Using pseudo-depth information to remove irrelevant scene parts from the

egocentric view improves hand pose estimation

• Accurate pose description is essential for correct action understanding,

struggle determination, and more in egocentric image processing
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Thank you!

wiktor.mucha@tuwien.ac.at

TU Wien

Wiktor Mucha
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