

Understanding Human Behaviour With Wearable Cameras Based on Information From the Human Hand

ESR 10 – Final Project Meeting

Alicante, Spain 17 June, 2024 Wiktor Mucha Computer Vision Lab TU Wien

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodows-ka-Curie grant agreement No 861091".

Introduction

Egocentric vision and hand pose estimation

Understanding Human Behaviour With Wearable Cameras Based on Information From the Human Hand – Wiktor Mucha

Introduction

- Using a wearable camera can illustrate in detail which activities the person wearing the camera has done during the day
- Egocentric → placing a camera on a human body giving a view from this person's perspective
- 2D Hand Pose Estimation → Reconstruction of 21 points describing the finger joints, palm and wrist positions in 2D space

RayBan Stories[3]

User wearing a lifelogging device[1]

[1] https://newatlas.com/narrative-clip-2/35422/ visited on 20.01.2022

Division of egocentric behaviour analysis

Nguyenet al., Recognition of Activities of Daily Living with Egocentric Vision: A Review. Sensors (Basel, Switzerland) vol. 16,1 72. 7 Jan. 2016

3

Division of egocentric behaviour analysis

Long-Term Behaviour Analysis vs. Short-Term Behaviour Analysis

Routines vs. real-time

Registration of **activities vs.** detailed understanding of **actions** Identifying **where** people **eat vs.** identifying food and **estimating micro/macro ingredients**

Egocentric Actions

Examples of actions in EPIC-KITCHEN dataset[5]

[5] https://epic-kitchens.github.io/2021 visited on: 24.09.2022

Understanding Human Behaviour With Wearable Cameras Based on Information From the Human Hand – Wiktor Mucha

Observations from Egocentric Recordings

- Hands play the main role in the scene next to the manipulated object
- Most of the actions are different hand movements related to the object, e.g. rotating, picking up
- Several ADLs based on hands:
 - Eating
 - Drinking
 - Taking medication

Estimation of Hand Pose

In the Egocentric View

Understanding Human Behaviour With Wearable Cameras Based on Information From the Human Hand – Wiktor Mucha

Egocentric 2D Hand Pose

Single Hand Approach \rightarrow *EffHandNet*:

- Pre-trained hand detector in the egocentric input image
- Hand pose prediction in segmented regions R_1 , R_2
- Feature extractor:
 - → EfficientNetV2-S [11]
- Prediction head:
- → Sequence of transposed convolution resulting in heatmaps

Pros and Cons:

+More datasets available

-Multiplied forward pass through backbone network

-Considers region of a single hand only

[11] Mingxing Tan and Quoc Le, "Efficientnetv2: Smaller models and faster training," in International Conference on Machine Learning. PMLR, 2021, pp. 10096–10106.

Egocentric 2D Hand Pose

Egocentric Approach → *EffHandEgoNet*

- Handness prediction module H_L , H_R
- Two up-sampling heads
- Improves modelling of hand-object interaction
- Output hand pose: $Ph_l^i = (x, y)$

Pros and Cons:

- -Less public data
- +Single forward pass in the backbone stage
- +Learning hand-hand interactions

Evaluation

EffHandNet:

Bets result in non-egocentric
 FreiHand dataset

TABLE I: Results of 2D single-hand models on *FreiHAND dataset*. Referenced results are reported by the authors of the methods, while unreferenced results are computed by us using open-source implementations.

Method	Year	PCK0.2↑	EPE↓	<u>AUC</u> ↑
test subset fr	om rando	om data split	80/10/10	
PoseResNet50 [7]	2020	99.20%	3.27	86.8
MediaPipe	2020	71.77%	7.45	79.7
Santavas et al. [29]	2020	-	4.00	87. 0
EffHandNet	2024	98.70%	2.24	92.1
EffHandNet+P	2024	99.32%	1.59	93.5
	final tes	t subset		
MediPipe	2020	81.73%	5.29	83.9
PoseResNet50	2020	87.48%	4.32	86.0
EffHandNet	2024	88.76%	4.19	<u>86.5</u>
EffHandNet+P	2024	91.08%	3.67	87.9

Evaluation – Egocentric Hand Pose

EffHandNet:

- Poor performance in hand detection
 stage
- **High** End-Point Error (**EPE**) (pixels)

EffHandEgoNet:

• Best performance on both datasets

TABLE II: Results for 2D hand pose estimation in egocentric *H2O Dataset*. The table includes hand detection accuracy, hand pose estimation PCK0.2, EPE and AUC metrics in pixels for an image size of 1280x720. Results are calculated using open-source implementations and authors' model weights.

Method:	Year	Acc.↑	PCK0.2↑	EPE↓	AUC↑
	Ŀ	I2O Data	set	-	
PoseResNet50 [7]	2020	99.47	74.42%	26.69	81.4
MediaPipe [40]	2020	96.93	86.22%	21.22	85.1
HTT [37]	2023	-	84.75	19.94	84.8
H2OTR [6]	2023		95.55	12.46	89.4
EffHandNet	2024	99.47	76.27%	22.52	82.0
EffHandEgoNet	2024	99.91	97.38%	9.80	90.7
	FI	PHA Date	iset		
H2OTR [6]	2023	-	94.67	17.50	89.3
HTT [37]	2023	π	92.07	18.07	88.7
Ours	2024	-	96.37	15.20	88.5

Pose error for different methods in edge scenarios for **overlapping** and **fully separated hands**:

- Bottom-up the smallest error
- Bottom-up performs with minimal difference between scenarios
- Detection-based methods result in higher difference between scenarios

Egocentric 3D Hand Pose

I. Extending EffHandEgoNet to 3D

- Architecture with regressions module for estimation of z coordinate representing depth
- Regression head + upsampler = 2.5D coordinates (image space)
- Pinhole camera model transformation to 3D

Egocentric 3D Hand Pose with SHARP

SHARP: Segmentation of Hands and Arms by Range using Pseudo-Depth

Table 3. Results of ablations studies with different depth image types used in SHARP. All results provided in mm in camera space for left, right and both hands.

а. Э	Depth	$\textbf{MPJPE Left} \downarrow$	$\mathbf{MPJPE} \ \mathbf{Right} \downarrow$	$\textbf{MPJPE Both} \downarrow$
Ours	Estimated	30.31	27.02	28.66
Ablation I	X	32.95	38.01	35.48
Ablation II	Ground Truth	21.31	28.86	25.09
Ablation III	Est.+De-sharpen	39.49	35.01	37.25

SHARP and Segmentation Distance

Fig. 7. On the left, frame processed with SHARP and different values of t. On the right, the same frame processed with SHARP, t = 0.47 and with de-sharpening applied.

Qualitative Results of 3D Hand Pose Estimation with SHARP

Applications of Hand Pose Estimation

In the Egocentric View

Action Recognition

- Usage of hands and objects as input for supervised sequence model
- Allows to use of **pre-trained** models reducing the learning costs

- Input sequence of frames $f_1, f_2...f_n$ where $n \in [1, 2...20]$
- Actions shorter than n frames \rightarrow zero padding
- Actions longer than n frames \rightarrow uniform subsampling

- Implemented using state-of-the-art YOLOv7 model
- Object described as $Po_{bb}^{i}(x, y)$ where $i \in [1..4]$ corresponds to the **bounding box corners**
- P_{ol} describes object label

21

We implement two different approaches for hand pose estimation:
 → top-down and bottom-up

- Each frames describes: $f_n = Ph_l^i(x, y) Ph_r^i(x, y) Po_{bb}^i(x, y) P_{ol}$
- Sequence of frames: $V_{seq} = [f_1, f_2, f_n]$

Action Recognition and Hand Pose Models

Action recognition with different hand pose estimation methods:

- Strong correlation in action recognition accuracy of predicted hand poses when we train with ground truth skeletons and test with prediction
- Similar observation for training and testing with estimates

State-of-the-art results **despite** using **only 2D** information

- Best results in H2O Dataset
- **Competitive** result in *FPHA Dataset*

TABLE III: Results in accuracy of action recognition methods on *H2O* and *FPHA* datasets. Inputs of methods are: *Img* stands for semantic features extracted from an image using CNN network, *Hand P.* and *Obj P.* stand for pose information type for hands and objects, and *Obj L.* stands for object label. Results are from referenced papers.

		H2O	Dataset			
Method:	Year	Img	H. P.	Obj P.	Obj L.	Acc.↑
C2D [35]	2018	\checkmark	X	X	X	70.66
I3D [4]	2017	~	X	X	X	75.21
SlowFast [12]	2019	~	X	X	X	77.69
H+O [32]	2019	X	3D	6D	\checkmark	68.88
ST-GCN [38]	2018	X	3D	6D	\checkmark	73.86
TA-GCN [17]	2021	X	3D	6D	√	79.25
HTT [37]	2023	~	3D	X	\checkmark	86.36
H2OTR [6]	2023	X	3D	6D	\checkmark	90.90
Ours	2024	X	2D	2D	\checkmark	91.32
		<i>FPH</i>	A Datase	rt -		0.
Method:	Year	Img	H. P.	Obj P.	Obj L.	Acc.↑
FPHA [13]	2018	X	3D	-	\checkmark	78.73
H+O [32]	2019	X	3D	-	\checkmark	82.43
Coll. [39]	2020	\checkmark	3D	19 A.	\checkmark	85.22
HTT [37]	2023	\checkmark	3D	-	\checkmark	94.09
VPA [28]	2021	X	3D	-	\checkmark	95.93
Ours	2024	X	2D	-	\checkmark	94.43

Inference time with 2D Hand Pose

Inference test performed over **1000 runs** on NVIDIA RTX 3060:

- Circles in the figure represent the **number** of trainable **parameters**
- Our method has the fastest inference and highest action recognition

Action Recognition Results with SHARP

Table 2. Results in accuracy of action recognition methods on *H2O Dataset*. Inputs of methods are: *Img* stands for semantic features extracted from an image using CNN network, *Hand Pose* and *Obj Ppose* stand for pose information type for hands and objects, and *Obj Label* stands for object label. Results origin from referenced studies.

Method:	Year	Img	Hand Pose	Obj Pose	Obj Label	Acc. \uparrow
C2D [27]	2018	\checkmark	×	×	×	70.66
I3D [2]	2017	\checkmark	×	×	×	75.21
SlowFast [10]	2019	\checkmark	×	×	×	77.69
H+O [25]	2019	×	3D	6D	\checkmark	68.88
ST-GCN [31]	2018	×	3D	$6\mathrm{D}$	\checkmark	73.86
TA-GCN [16]	2021	×	3D	$6\mathrm{D}$	\checkmark	79.25
HTT [29]	2023	\checkmark	3D	×	\checkmark	86.36
H2OTR [5]	2023	×	3D	6D	\checkmark	90.90
EffHandEgoNet [17]	2024	X	$2\mathrm{D}$	$2\mathrm{D}$	\checkmark	91.32
Ours	Now	×	3D	2D	\checkmark	91.73

Inference Time with SHARP

Struggle Determination

Struggle Determination

Determination of struggle level in **three** different task → **binary** and **4-way**

Motivation:

→ Correct struggle recognition leads to robust assistance for individuals Current results and outcomes:

- Binary determination with 89% of accuracy
- Best when merging hand pose information and semantic features from image

Tower of Hanoi

Tent Assembly

Pipes Assembly

Hand Rehabilitation

Understanding Human Behaviour With Wearable Cameras Based on Information From the Human Hand – Wiktor Mucha

Examples of common hand rehabilitation exercises for stroke patients

Wrist Curls

Ball Grip

Palm Up and Down

Motivation:

- Stroke remains the third leading cause of mortality and disability worldwide
- Approximately 85% of stroke patients worldwide experience hand dysfunction
- No egocentric studies available

32

Upper-limb Rehabilitation with Egocentric Vision for Stroke Patients

Challenges:

Exercise recognition Repetition counting Exercise detection Form evaluation

Preliminary stage

- 9 users of different age (25-88 years old)
- 13 common exercises for each hand \rightarrow 25 exercises
- 97% recognition of exercises in validation subset with SlowFast Network

Conclusion

- Bottom-up methods tend to fail in egocentric perspective for hand pose estimation
- In certain scenarios, i.e. reducing inference time, 2D pose information is a promising alternative to estimated 3D pose for egocentric action recognition
- Using pseudo-depth information to remove irrelevant scene parts from the egocentric view improves hand pose estimation
- Accurate pose description is essential for correct action understanding, struggle determination, and more in egocentric image processing

Thank you!

Wiktor Mucha

TU Wien

wiktor.mucha@tuwien.ac.at

