

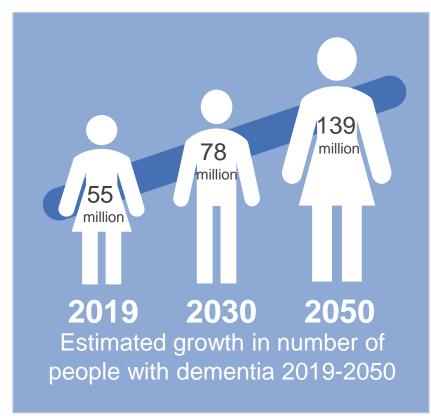
ESR12. Measuring dementia behaviours through depth sensors

Joint visuAAL-GoodBrother conference

Alicante, Spain 18.06.2024

Irene Ballester Campos Computer Vision Lab, TU Wien

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 861091"


Introduction: AI for Dementia Care

What's dementia?

- Syndrome in which there is a deterioration in cognitive functioning beyond what might be expected from normal ageing [1]
- One of the major causes of dependency among older people [2]

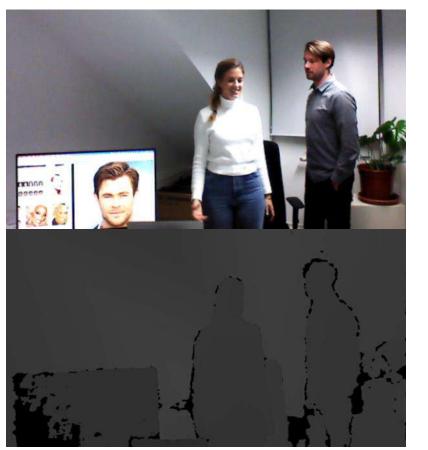
Why dementia?

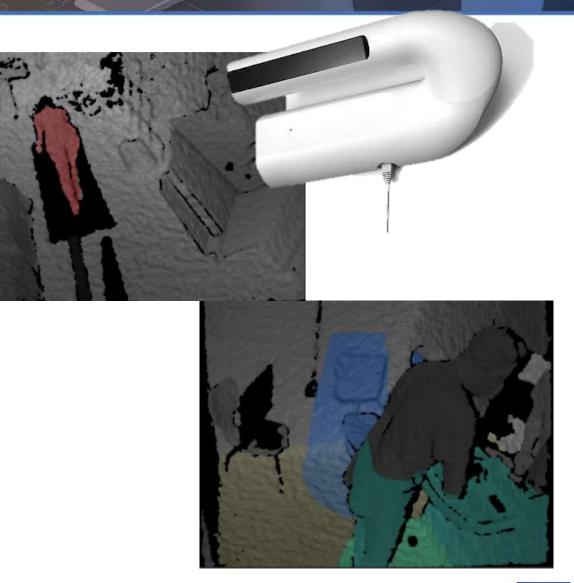
- Behavioural changes **strongly correlated** with the degree of functional and cognitive impairment [2].
- Behavioral and Psychological Symptoms of Dementia (BPSD): agitation, aberrant motor behaviour, anxiety, irritability, depression, apathy, delusions, changes in sleep or appetite [3].

Data source: WHO [1]

[1] World Health Organization https://www.who.int/news-room/fact-sheets/detail/dementia (accessed April 28, 2024)
[2] Global status report on the public health response to dementia. World Health Organization (2021)

[3] Joaquim Cerejeira, Luisa Lagarto, and Elizabeta Blagoja Mukaetova-Ladinska. "Behavioral and psychological symptoms of dementia". In: Frontiers in neurology 3 (2012), p. 73.




Data modality: depth

One of the main concerns: PRIVACY

RGB

Al for behaviour analysis from unobtrusive sensor data

Goal: Development of AI methods for **measuring** the **behaviours** of care home residents with **dementia** using **unobtrusive sensors (depth maps)**

In order to:

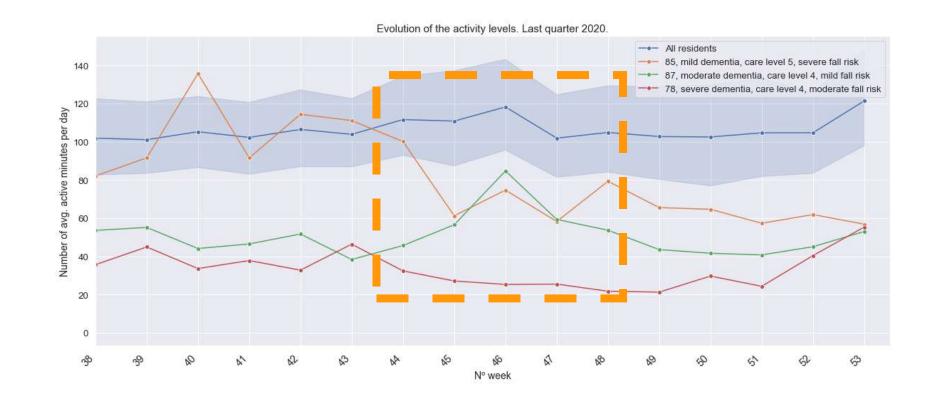
- 1. Unobtrusive Remote Patient Monitoring
- 2. Provide assistance with ADLs

Al for behaviour analysis from unobtrusive sensor data

Goal: Development of AI methods for **measuring** the **behaviours** of care home residents with **dementia** using **unobtrusive sensors (depth maps)**

In order to:

- 1. Unobtrusive Remote Patient Monitoring
- 2. **Provide assistance with ADLs**



4

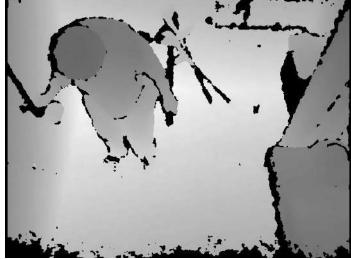
Ultimate goal

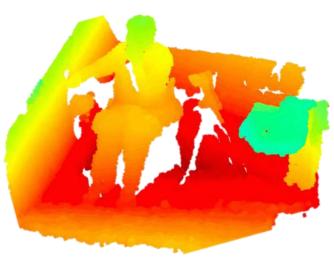
Detect and measure functional and behavioural changes indicative of dementia

RQ1. Different inputs for behaviour measurement

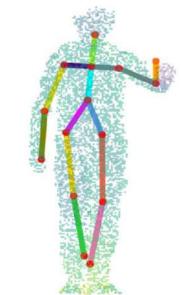
RQ2. Robust performance for real-world HAR

RQ1. Different inputs for behaviour measurement

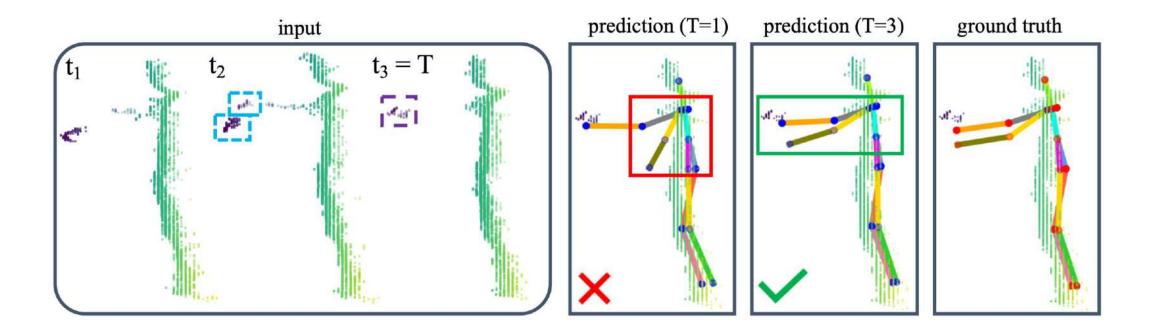

RQ2. Robust performance for real-world HAR

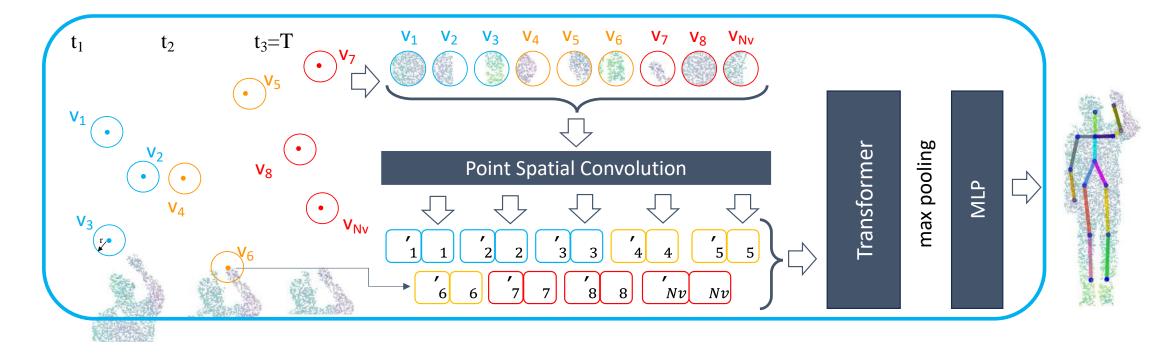


Different inputs



Point clouds from depth


Skeletons from depth/point clouds


Motivation: Sequence information helps with occlusions and noise

SPiKE: Method

- How to process sequences of point clouds?
 - Spatial point convolution in local areas
 - Transformer + MLP for prediction of 3D joints

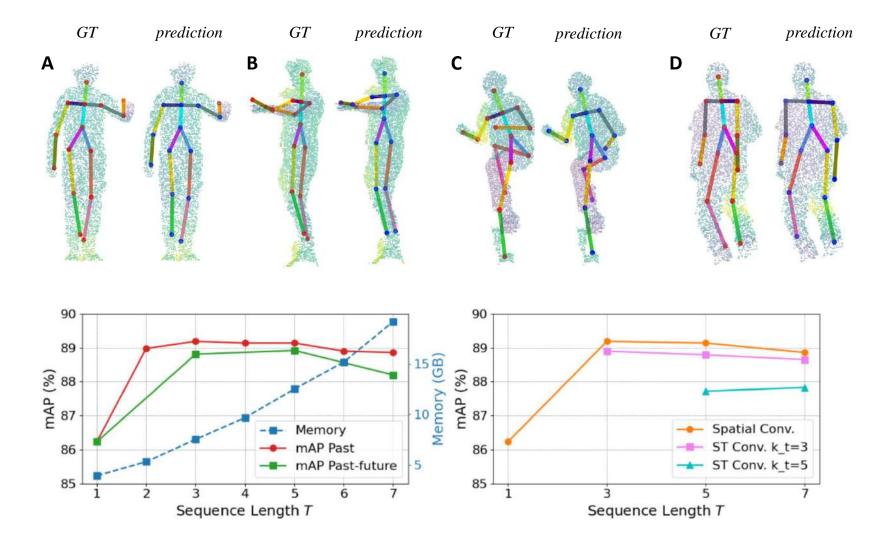
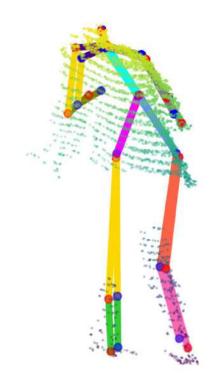

	Single Modality Methods							Multimodal Methods		
Method	V2V 2018	A2J 2019	WSM* 2020	Zhou et al. 2020	DECA 2021	SPiKE (Ours)	WSM 2020	AdaPose 2021	e HRNet+ RefiNet 2023	
Modality	voxels	depth	points	points	depth	points	${\scriptstyle depth+points}$			
Head Neck	$98.29 \\ 99.07$	$98.54 \\ 99.20$	-	96.73 98.05	93.87 97.90	98.42 99.47	$98.15 \\ 99.47$	98.42 98.67	-	
Shoulders Elbows	$97.18 \\ 80.42$	96.23 78.92	-	94.38 73.67	$95.22 \\ 84.53$	$97.48 \\ 81.64$	94.69 82.80	95.39 90.74	-	
Hands	67.26	68.35	-	54.95	56.49	71.71	69.10	82.15	-	
Torso Hips	$98.73 \\ 93.23$	98.52 90.85	-	$98.35 \\ 91.77$	$99.04 \\ 97.42$	99.24 93.68	$99.67 \\ 95.71$	$99.71 \\ 96.43$	-	
Knee Feet	$91.80 \\ 87.60$	$90.75 \\ 86.91$	-	$\begin{array}{c} 90.74\\ 86.30\end{array}$	$94.56 \\ 92.04$	$91.56 \\ 84.30$	$91.00 \\ 89.96$	$\begin{array}{c} 94.41\\92.84\end{array}$	-	
Upper B. Lower B.	-	-	-	$\begin{array}{c} 80.10\\ 89.60\end{array}$	83.03 95.30	88.75 89.85	-	-	80.8 88.1	
Mean	88.74	88.00	75.64*	85.11	88.75	89.19	89.59	93.38	84.2	

Table 1. Comparison with the state-of-the-art for ITOP front-view (0.1m mAP)

SPiKE: Qualitative results and ablations



- 1. Sequence information is useful, but up to a certain sequence length
- 2. Spatial Convolutions help to preserve spatial structure (useful for HPE)
- 3. SOTA in ITOP

 Future work: How does SPiKE perform with real-world data?

RQ1. Different inputs for behaviour measurement

RQ2. Robust performance for real-world HAR

Domain gaps

2.5D (self)-occlusions complex, natural activities unbalanced classes frontal vs. tilted angles sparsity and noise

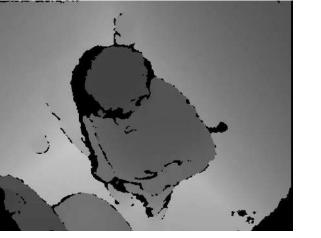
Benchmarks

Real-world data

Bathroom Activities Dataset (BAD)

Description

- 50 full sequences
- **19 subjects with dementia** using the toilet
- 8 classes: walking around, undressing, sitting down, sitting on the toilet, standing up, dressing, washing hands
- 2 different locations:
 - BAD1: 3 subjects (36k frames)
 - BAD2: 16 subjects (21k frames)
- Unbalanced dataset:

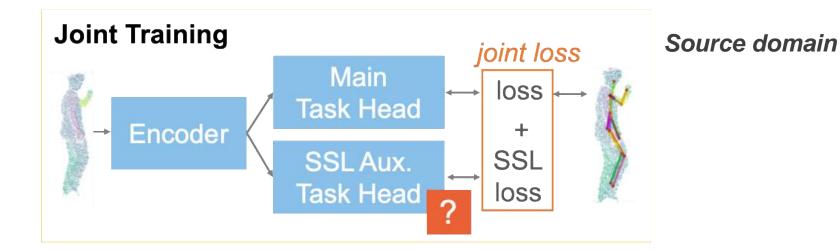

E.g.: in BAD2: sitting: 8k frames vs. sitting down: 679 frames


BAD1 – 3 subjects

Domain Gaps

Performance gap between benchmarks and real-world datasets

Performance gap between real-world scenes


P4T [2]						
Trained on		MSRAction3D	NTU 60 (cs)	BAD1 (cs)	BAD2 (cs)	
MSRAction3D		90.94	-	-	-	
NTU 60 (cs)		-	90.2	-	-	
BAD1 (cs)		-	-	53.15	7.23	
BAD2 (cs)		-	-	7.90	63.63	
SPiKE						
Trained on		ITOP-S	IDE	ITOP-TOP		
ITOP-SIDE		89.19	9	24.75*		
ITOP-TOP		36.81	*	81.58*		
Perfo	ormar	nce gap betwee	n views	*Work-in-progress		

[2] Fan, H., Yang, Y., & Kankanhalli, M. (2021). Point 4d transformer networks for spatio-temporal modeling in point cloud videos. CVPR 2021

Test-Time Training for Domain Adaptation in Point Cloud Sequences

Target domain

Target domain

- Take away message
 - Very promising achievements in benchmarks, how do they behave with realworld data?
 - Need for evaluation in real-world scenarios and (potentially) domain adaptation for AAL applications
- Future work:
 - Pre-training strategies
 - Self-supervised learning
 - Continual learning

Thank you!

Irene Ballester Campos

TU Wien

irene.ballester@tuwien.ac.at

Measuring dementia behaviours through depth sensors

Irene Ballester Campos irene.ballester@tuwien.ac.at

Innovative Training Network on Privacy-Aware and Acceptable Video-Based Technologies and Services for Active and Assisted Living

@visuAAL_ITN

https://www.visuaal-itn.eu/

This project has received funding from the European Union's Horizon 2020 research and Innovation programme under the Marie Skłodowska-Curie grant agreement No 861091 and from the WWTF under the project number ICT20-055.