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Introduction: Al for Dementia Care

What's dementia?

« Syndrome in which there is a deterioration

in cognitive functioning beyond what might be

expected from normal ageing [1] . ‘
* One of the major causes of dependency among older

people [2]
Why dementia?
» Behavioural changes strongly correlated with the degree

of functional and cognitive impairment [2].

2019 2030 2050

 Behavioral and Psychological Symptoms of Dementia Estimated growth in number of
(BPSD): agitation, aberrant motor behaviour, anxiety, people with dementia 2019-2050
irritability, depression, apathy, delusions, changes in sleep
or appetite [3] Data source: WHO [1]

[1] World Health Organization https://www.who.int/news-room/fact-sheets/detail/dementia (accessed April 28, 2024)
[2] Global status report on the public health response to dementia. World Health Organization (2021)
[3] Joaquim Cerejeira, Luisa Lagarto, and Elizabeta Blagoja Mukaetova-Ladinska. “Behavioral and psychological symptoms of dementia”. In: Frontiers in neurology 3 (2012), p. 73.
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Data modality: depth

One of the main concerns: PRIVACY
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Thesis Overview

Al for behaviour analysis from unobtrusive sensor data

Goal: Development of Al methods for measuring the behaviours of care home residents
with dementia using unobtrusive sensors (depth maps)

In order to:

1. Unobtrusive Remote Patient Monitoring

2. Provide assistance with ADLS
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Unobtrusive Remote Patient Monitoring

Ultimate goal
Detect and measure functional and behavioural changes indicative of dementia

Evolution of the activity levels. Last quarter 2020.
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Research Questions

RQ1. Different inputs for behaviour measurement

RQ2. Robust performance for real-world HAR
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Human Activity Recognition from depth sequences

Different inputs

(Raw) depth images Point clouds from depth Skeletons from depth/point clouds
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SPIKE: 3D Human Pose (HPE) from Point Cloud Sequences

Motivation: Sequence information helps with occlusions and noise

prediction (T=1)  prediction (T=3) ground truth
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SPIKE: Method

« How to process sequences of point clouds?
« Spatial point convolution in local areas
* Transformer + MLP for prediction of 3D joints
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SPIKE: Comparison with SOTA

Table 1. Comparison with the state-of-the-art for ITOP front-view (0.1m mAP)

Single Modality Methods Multimodal Methods

Method V2V A2) WSM* Zhou DECA SPiKE §WSM AdaPose HRNet-+
et al. RefiNet
2018 2019 2020 2020 2021 2020 2021 2023

Modality voxels depth points points dept depth-fpoints
Head 98.29 98.54 - 96.73 93.87 98.15 98.42 -
Neck 99.07 99.20 - 98.05 97.90 99.47 98.67 -
Shoulders 97.18 96.23 - 94.38 95.22 94.69 95.39 -
Elbows 80.42 78.92 - 73.67 84.53 82.80 90.74 -
Hands 67.26 68.35 - 54.95 56.49 69.10 82.15 -
Torso 98.73 98.52 B 98.35 99.04 99.67 99.71 -
Hips 93.23 90.85 - 91.77 97.42 95.71 96.43 -
Knee 91.80 90.75 - 90.74 94.56 91.00 94.41 -
Feet 87.60 86.91 - 86.30 92.04 89.96 92.84 -
Upper B. - - - 80.10 83.03 - - 80.8
Lower B. - - - 89.60 95.30 - - 88.1

Mean 88.74 88.00 75.64* 85.11 88.75
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SPIKE: Qualitative results and ablations
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SPIKE: Conclusions and future steps

1.

Sequence information is useful, but up to a certain sequence length
Spatial Convolutions help to preserve spatial structure (useful for HPE)
SOTAIN ITOP

w N

* Future work:
How does SPIKE perform with real-world data?
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Research Questions

RQ1. Different inputs for behaviour measurement

RQZ2. Robust performance for real-world HAR
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Domain gaps

Benchmarks

QWSUAAL

VS

Real-world data

2.5D

(self)-occlusions
complex, natural activities
unbalanced classes
frontal vs. tilted angles
sparsity and noise




Bathroom Activities Dataset (BAD)

Description
* 50 full sequences

* 19 subjects with dementia using the
toilet

» 8 classes: walking around, undressing,
sitting down, sitting on the toilet, standing
up, dressing, washing hands

« 2 different locations:
« BADI1: 3 subjects (36k frames)
« BAD2: 16 subjects (21k frames)
 Unbalanced dataset:

E.g.: in BADZ2: sitting: 8k frames vs. sitting
down: 679 frames




Domain Gaps

Performance gap between benchmarks
and real-world datasets

F 3

Performance gap between
real-world scenes

Human Activity Recognition

P4T [2] Tested on (acc.)

Trained on MSRAction3D NTU 60 (cs) BAD1 (cs) BADZ2 (cs)

MSRAction3D 90.94 - - -

NTU 60 (cs) - 90.2 - -

BAD1 (cs) - - 53.15 7.23

BAD?2 (cs) - - 7.90 63.63
Human Pose Estimation

SPIKE Tested on (MAP@0.1m)

Trained on ITOP-SIDE ITOP-TOP

ITOP-SIDE 89.19 24.75*

ITOP-TOP 36.81* 81.58*

Performance gap between views

*Work-in-progress

[2] Fan, H., Yang, Y., & Kankanhalli, M. (2021). Point 4d transformer networks for spatio-temporal modeling in point cloud videos. CVPR 2021

@) isuMAL




Test-Time Training for Domain Adaptation in Point Cloud -Sequences

Target domain
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Conclusions

« Take away message

* Very promising achievements in benchmarks, how do they behave with real-
world data?

* Need for evaluation in real-world scenarios and (potentially) domain
adaptation for AAL applications

« Future work:
» Pre-training strategies
 Self-supervised learning
« Continual learning
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Al for dementia care

Thank you!

Irene Ballester Campos

TU Wien

irene.ballester@tuwien.ac.at
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Measuring dementia behaviours through depth sensors

Irene Ballester Campos
Irene.ballester@tuwien.ac.at

Innovative  Training  Network  on ] @visuAAL TN

. A AL Privacy-Aware and Acceptable Video- il
\ S VISU Based Technologies and Services for g‘ https://www.visuaal-itn.eu/
- Active and Assisted Living ,

This project has received funding from the European Union’s Horizon 2020
research and Innovation programme under the Marie Skiodowska-Curie grant
agreement No 861091 and from the WWTF under the project number ICT20-055.
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