

Context Recognition for the Application of Visual Privacy

ESR 14

University of Alicante 18/06/2024

Kooshan Hashemifard

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 861091".

Motivation

- Demographic changes
- Burden to care personnel and facilities
- Damage to autonomy, self-esteem and spirit
- Ambient-assisted living (AAL) and sensors
- Video-based technology
- The most directed and natural way to record events
 - Pros: Provide richer information
 - Cons: Easy to interpret by unauthorized viewers and privacy issues

- Find a visualization method to understand what is happening and at the same time preserve privacy
- Previous work introduced privacy-by-context:
 - Level-based visualization
 - Selected according to the context

Objective: Automatic selection of visualization

Context Variables

Context is modeled by the following variables:

- Incident
- Appearance
- Observer
- Place, ...

Research Questions

- This leads to the following research questions, in line with the objective:
 - - Can we automatically estimate the context that may affect visualization preference?
 - - Can we estimate relevant activities?
 - - Can we estimate relevant events, such a fall?
 - - Can we estimate degree of nudity?
 - Can we integrate them into a privacy-by-context approach so that visual privacy adapts in real time?

Appearance in AAL

Nudity and AAL

- Serious concerns about person appearance recorded in a video
- Appearance detection can be interpreted as nudity detection in the context of AAL
- Skin Exposure Detection plays a crucial role in nudity detection
- Estimate the degree of nudity

Background

Appearance Detection in Literature

- Obscene image Classification
 - Naïve approach
 - No level-based classification
 - Subjective
 - Fail to generalize the problem
 - Limited standard datasets
- Garment Detection
 - Detect different clothing and wearables
 - Market analysis and finding trends
 - Does not necessarily represent the coverage level
 - Cannot cover all types of garments

1- Dataset

Validation

Body Erosion	Garment Dilation	Hair Dilation	Skin Erosion	Precision	Recall	F1score	CDR
5	1	3	1	93.45%	93.05%	93.25%	98.92%
3	1	3	3	92.28%	94.49%	93.37%	98.92%
3	1	1	7	91.94%	94.72%	93.31%	98.91%
5	1	1	7	93.11%	93.27%	93.19%	98.90 %
7	5	5	5	95.72%	88.07%	91.74%	98.72%
7	7	7	7	96.05%	85.94%	90.71%	98.58%
1	1	1	1	90.44%	95.8%	93.04%	98.85%
0	1	3	0	90.78%	95.56%	93.11%	98.86%

2-Architecture

3- Training

Method	Precision	Recall	F1- score	CDR	DSC	Param.
SegNet UNet Basic FCN DSNet HLNet	80.71% 82.66% 70.34% 85.80% 76.50%	$egin{array}{c} 80.12\%\ 85.34\%\ 84.88\%\ 85.08\%\ 79.86\% \end{array}$	80.29% 83.83% 76.80% 85.40% 78.01%	97.75% 98.01% 97.11% 98.35% 97.43%	$78.82\% \\82.38\% \\74.40\% \\84.14\% \\76.08\%$	$30M \\ 30M \\ 10M \\ 8M \\ 1.2M$
Proposed Method Base Network With Body Attention With Skin Attention	$\begin{array}{c} \textbf{88.30\%} \\ 76.20\% \\ 78.11\% \\ 86.62\% \end{array}$	$\begin{array}{c} \textbf{85.91\%}\\ 78.22\%\\ 82.08\%\\ 83.11\%\end{array}$	$\begin{array}{c} \textbf{86.96\%}\\ 77.19\%\\ 80.04\%\\ 84.82\%\end{array}$	98.45% 97.24% 97.81% 98.18%	$\begin{array}{c} \textbf{86.44\%} \\ 75.88\% \\ 78.92\% \\ 83.33\% \end{array}$	1M 1M 1M 1M

5-Nudity Recognition

Proposed Appearance Detection in AAL

Nudity Level

Nudity Level	Description			
1	Completely covered			
2	Covered torso (neck to knee)			
3	Covered intimate areas			
4	Covered faces			
5	Full body or exposed intimate areas			

Transfer Learning

- End-to-end Object Detection approach with 2 classes: fallen and upright individuals
- Top layer of the object detector network was replaced with two output neurons for each status
- Pre-trained parameters retained, except for the last layer
- Fine-tune on E-FPDS dataset, contains 6982 images captured in indoor environments, with 5023 instances of falls and 2275 instances of non-falls in various scenarios, including variations in pose, size, occlusions, and lighting

Knowledge Distillation

- State-of-the-art CNN-based networks can be computationally expensive and difficult to deploy on smaller devices, especially in real-time and multi-tasking scenarios
- Knowledge distillation has emerged to directly learn compact models by transferring knowledge from a large model (teacher network) to a smaller one (student network)
- Reducing computational costs without sacrificing validity
- Fine-grained Feature Imitation method
 - Local features in the object region and near its anchor location contain important information and are more crucial for the detector and how the teacher model tends to generalize
 - The smaller student detector is trained by using both ground truth supervision and feature response imitation on object anchor locations from the teacher networks

Knowledge Distillation

Evaluation In-the-wild with Luxonis

- model's performance in real-world settings after conversions
- videos, captured using the Luxonis OAK-D camera
- 38 videos recorded from various angles and labeled

Model	Precision	Recall	mAP50	mAP50- 95
YOLOv6 L	99.12%	98.64%	99.45%	65.58%
YOLOv6 M	94.95%	98.21%	98.64%	65.33%
YOLOv6 S	92.71%	95.22%	98.10%	62.67%
YOLOv5 L	93.48%	88.36%	94.89%	58.12%
YOLOv5 S	83.67%	86.44%	93.37%	46.77%
YOLOv5 S-v6 L	94.46%	91.83%	95.04%	57.29%

Background & Tools

Toyota Smarthome Dataset

- The subjects are senior people in the age range 60-80 years old.
- 35 Activities from daily living: ٠
 - Composite Activities: cooking, cleaning, making breakfast
 - Elementary Activities: laydown, watch tv, use laptop, reading, phone call, take pill
 - Object-based Activities: drink from bottle/can
- Data Modalities available: RGB, depth, skeleton
- Data Modalities use:
- RGB for scene details, depth maps for 3D structural information, skeletal data for 3D joint locations.

Multi-modal approaches integrate different modalities for a comprehensive understanding of complex actions.

Deep Learning Solution for HAR

- Spatial Information:
 - Utilization of CNN. CNNs' ability to extract useful and discriminative features
- Temporal Information:
 - Existing deep architectures encode temporal information with limited solutions.
 - Challenges in acquiring both local and global variations of temporal features.
 - RNNs and time series models, higher dimension CNNs, newer Transformer architecture.

• Transformers in HAR

- New encoder-decoder architecture using attention mechanism.
- Success in natural language processing tasks; now applied to images and video recognition.
- Video as a sequence of images, akin to language processing (image frames as words).
- Not restricted to sequential processing; attention mechanism provides context for any position.
- Relatively new approach, Increasing research focus on transformers for action recognition in recent years.

1- Backbone

CNN-based Network for rich feature extraction

- 3D CNN Networks: I3D Net
- Time-distributed 2D CNN Networks: EfficientNet, DenseNet, InceptionNet, ...

2- Pose Information

- The RGB image includes rich scene and object information, but does not encode long-range temporal information
- Pose info is more robust to changes in appearance, clothing, or lighting condition
- View invariance: Relationship between body joints coordinates can tackle Cross-view (CV) problem.
- Pose as Graph: joints as Vertexes and bones as Edges
- Approach: GCN and Body Joints Graph

3- Reinforcing Feature extraction with Object Detection

- Auxiliary information about Daily Activities
 - House Objects can play an import role for a given activity
 - Location information
- Advances in Object Detection
- House objects datasets

Object Groups of Interests

- Person
- Kitchen Furniture: Stove, Refrigerator, Oven, Microwave, Sink
- Living room Furniture: TV, Sofa, Table
- Cutlery: Spoon, Knife, Dish, Glass
- Food
- Bathroom Furniture: Toilet, Shower, Tube
- Electronics: Laptop, Cell phone, Tablet
- Bedroom Furniture: Bed, Wardrobe

Bringing All Together

Evaluation & Comparison

Methods	RGB	Skeleton	Pre-train	CS	CV1	CV2
I3D	X		K400	53.4	34.9	45.1
AssembleNet++	Х		K400	63.6	-	-
NPL	X		K400	-	39.6	54.6
Separable STA	X	X	K400	54.2	35.2	50.3
VPN	X	X	K400	60.8	43.8	53.5
LSTM		X	-	42.5	13.4	17.2
ST-GCN		X	-	53.8	15.5	51.1
2 s-AGCN		X	-	60.9	22.5	53.5
MS-G3D Net		X	-	61.1	17.5	59.4
UNIK		X	-	63.1	22.9	61.2
ViA		X	-	64	35.6	65.4
VIT Spatial + GCN Temporal (I3D backbone)	X	X	Smarthome	66.14	41.12	61.2
Without Temporal Pose	x	x	Smarthome	63.58	37	55

Top-view Activity Recognition

- 29 labeled classes of Activity
- More than 850 videos
- RGB and pose data
- Evaluating SOTA methods

Privacy Filters

Visualization Demo:

- Real-time illustration of different visualization
- Deployed on Jetson Xavier NX

A Step Closer to Privacy by Context System

- Activity Detection
- Incident Detection
- Appearance Detection
- Visualization Filters

Thank you!

Kooshan Hashemifard

University of Alicante

k.hashemifard@ua.es

Challenges

Evaluation Protocols

- Cross-Subject (CS): same camera view, performed by different person
- Cross-View (CV): different camera view, performed by the same person

Background & Tools

Human Activity Recognition (HAR)

Action recognition

involves identifying and classifying specific actions or movements.

- Examples: walking, jumping, specific gestures like waving or handshaking
- Applications: human-computer interaction, sports analysis, and robotics

Activity recognition

is a broader concept that involves identifying and understanding a sequence of actions or interactions over a certain period to infer the overall activity or behavior.

- Examples: cooking, playing basketball, working at a desk
- Applications: healthcare monitoring, smart homes, and context-aware computing

Multi-Source Information Integration Methods:

- Feature Concatenation: Combining features by concatenating them along a specific dimension.
- **Feature Fusion**: Integrating features through a fusion process, which can involve mathematical operations like addition, averaging, etc.

Cross Attention: Focusing on relevant parts of input data through attention mechanisms, allowing the model to emphasize important information during merging.

Adaptive Privacy by Appearance

Attention Modules

Body Attention

VISUAA

 $\mathbf{F}' = \mathbf{M}_{\mathbf{c}}(\mathbf{F}) \otimes \mathbf{F},$ $\mathbf{F}'' = \mathbf{M}_{\mathbf{s}}(\mathbf{F}') \otimes \mathbf{F}',$

Attention Modules

