

Privacy-Aware and Acceptable Video-Based Technologies and Services for Active and **Assisted Living**

ESR 16 - Irakli Pkhakadze, LL.M. Oslo/Hannover

Research Assistant

Stockholm University, The Swedish Law and Informatics Research Institute (IRI).

Digital twins as a way to help ensure legal compliance of video-based AAL technologies

Research Overview

- 1. Research Focus: Utilizing Digital Twins for data simulation and anonymization
- 2. Primary Goal: Compile a comprehensive report on Digital Twins in AAL Environments for data privacy
- 3. Challenges in AAL: Video-based technologies pose significant privacy risks
- 4. Necessity of Compliance: Legal adherence is crucial for the acceptance and sustainability of AAL technologies

Study Problem:

"Need to find solutions that ensure compliance without compromising personal data integrity. ensuring privacy and legal compliance is crucial for the adoption of AAL technologies."

- Legal compliance
- Ethical implications
- Practical implementations

Objectives of The Research

- Examine Digital Twins as tools for data simulation and anonymization
- Analyze GDPR's impact on DT's in AAL technology deployment
- Assess social, ethical, and legal challenges of Digital Twins.
- Review research and practical implementations of Digital Twins
 - Providing a systematic review of other regulatory frameworks governing Digital Twins in AAL environments

Relevance of Discussing Digital Twins in AAL Legal Compliance

Regulatory Clarity

Risk Management

Innovation Facilitation

Clarifies legal obligations for developers and deployers

Applicable regulations: Al Act, MDR

Emphasizes safety and reliability

Crucial for healthcare applications

Aligns with regulatory requirements

Ensures legal compliance fosters innovation in AAL technologies

Definition

"Dynamic and comprehensive virtual model that mirrors the physical, functional, and behavioral characteristics of a real-world entity or system across its lifecycle.

This simulation integrates multi-physics and multi-scale data, uses real-time updates and AI algorithms to replicate and predict the state and performance of its physical counterpart, facilitating optimization, monitoring, and decision-making within an interconnected physical and virtual environment"

1960

NASA's Early Applications

Apollo 13 mission: first practical digital twin to simulate real-time conditions.

2002

Introduction of Digital Twin Framework

Michael Grieves introduced the DT framework in Product Lifecycle Management (PLM)

"Mirrored Spaces Model."

2015-2020s

Advancements in Various Industries

Manufacturing: simulation capabilities, reducing physical prototypes

1991

Early Conceptualization

software models reflecting physical world data input

2010

NASA's and US Air Force's Official Adoption of the Term

2019

Conceptual Refinement

Michael Grieves refined the DT framework, emphasizing comprehensive understanding across various fields.

Current state

Broader Impact and Complex System Applications

Smart Energy Grids, Sociotechnical Systems, manufacturing plants, ergonomic simulations, livestock farming, and urban systems.

European Virtual Human Twin

FINAL EDITH-CSA
ECOSYSTEM MEETING:
15-16 JULY 2024, KIT
ROYAL TROPICAL
INSTITUTE, AMSTERDAM,
THE NETHERLANDS

Sign up at the: EDITH-CSA Ecosystem Meeting!

Digital Twins for Elderly Care

Individualized Care Plans

- Mental Health Support
- Physical Rehabilitation
- Medication Management

Optimized Living Environment

- Comfort and Safety
 Improvements
- Smart Home Technology

Cognitive Support

- Decision Assistance
 - Memory Aids

Social Engagement

- Social Activity Planning
- Family Communication

Health Surveillance

- Vital Signs Monitoring
- Dietary and NutritionManagement
- Physical Activity Tracking

Emergency Services

- Fall Detection
- Medical Alert System

Wearables/Sensors Smart/Home Devices

Wireless Protocols/IoT Gateway

IoT Platforms/Middleware/
Edge Computing/Cloud Computing

ual Representation/Simulation and Analytics

Health Alerts/Routine Reminders/Environmental Adjustments/Emergency Response

Caregiver Interface/User Interface

System Updates/Data Security

Data Collection Layer

Communication Layer

Data Processing Layer

Digital Twin Model Layer

Decision Support Layer

User Interface Layer

Maintenance and Feedback Layer

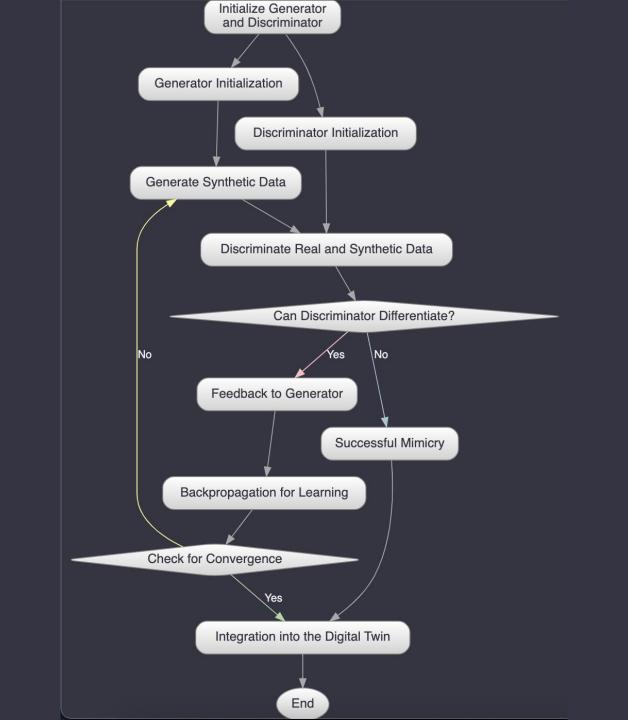
Strategies for Data Privacy in AAL

Anonymization & Pseudonymization

Permanently removing identifiers

Replacing identifiers with pseudonyms

Generative Adversarial Networks (GANs)


Edge Computing

Local data processing to minimize network transfer

Federated Learning & Privacy-Preserving Analytics:

Secure, decentralized data processing

Techniques like differential privacy and homomorphic encryption

"High-Risk AI Systems:

Al in diagnosis, monitoring physiological processes, and therapeutic decision-making.

Regulatory Context: Medical Devices Classification:

Al in healthcare often qualifies as **Medical Device software**. Requires **'conformity' assessment** by regulatory authorities.

"Al Act and High-Risk Classification:Al Act Framework:

Al integrated into software needing Medical Device conformity assessment is **high-risk** Al.

Q&A

Thank You!